Приведение к ступенчатому виду уравнений и матриц

2.2.3. Приведение матрицы к ступенчатому виду

Пусть дана ненулевая матрица

Приведение к ступенчатому виду уравнений и матриц

Опишем алгоритм, который с помощью элементарных преобразований приводит матрицу А к некоторому более простому виду. Будем использовать только элементарные преобразования строк, чтобы в дальнейшем можно было применить тот же алгоритм к решению систем линейных алгебраических уравнений.

Найдем в матрице А ненулевой элемент Ai1J1 c минимальным номером столбца J1 и переставим I1-ую строку с первой. Тогда получим матрицу вида

Приведение к ступенчатому виду уравнений и матриц

Приведение к ступенчатому виду уравнений и матриц

Теперь будем прибавлять к каждой строке с номером I, I = 2. M первую строку, умноженную на число Приведение к ступенчатому виду уравнений и матрицВ результате этих преобразований получим матрицу вида

Приведение к ступенчатому виду уравнений и матриц

Далее, с матрицей

Приведение к ступенчатому виду уравнений и матриц

Проведем преобразования, аналогичные тем, которые делались с исходной матрицей. Тогда исходная матрица будет приведена к виду

Приведение к ступенчатому виду уравнений и матриц

Продолжая этот процесс, придем к матрице Ступенчатого Вида

Приведение к ступенчатому виду уравнений и матриц

Для такой матрицы легко найти ранг. Действительно, выбрав первые R строк и столбцы J1, . Jr, получим минор

Приведение к ступенчатому виду уравнений и матриц

С другой стороны, любой минор порядка большего, чем R, равен нулю, так как содержит ненулевую строку. Тем самым ранг полученной матрицы равен R, а в силу того, что элементарные преобразования не меняют ранга матрицы, ранг исходной матрицы тоже равен R.

Приведем к ступенчатому виду матрицу

Приведение к ступенчатому виду уравнений и матриц

И найдем ее ранг. Чтобы иметь дело с целыми числами, удобно иметь ненулевой элемент с минимальным номером столбца равным единице. Для этого вычтем из первой строки вторую:

Приведение к ступенчатому виду уравнений и матриц

Теперь будем вычитать из всех строк, начиная со второй, первую, умноженную на элемент, стоящий во втором столбце и соответствующей строке:

Приведение к ступенчатому виду уравнений и матриц

Вычтем из третьей строки вторую:

Приведение к ступенчатому виду уравнений и матриц

Вычитая из последней строки третью, приходим к ступенчатому виду:

Приведение к ступенчатому виду уравнений и матриц

В полученной матрице три ненулевых строки, поэтому ее ранг, а значит, и ранг исходной матрицы равен 3.

Найти ранг матрицы

Приведение к ступенчатому виду уравнений и матриц

Приведя ее к ступенчатому виду.

Поменяем местами 1-ую и 3-ю строки матрицы А:

Приведение к ступенчатому виду уравнений и матриц

Теперь вычтем 1-ую строку из 2-ой и 4-ой, а к 3-ей строке прибавим 1-ую, умноженную на 2:

Приведение к ступенчатому виду уравнений и матриц

Вычтем из 3-ей строки 2-ую, а из 4-ой – удвоенную 2-ую:

Приведение к ступенчатому виду уравнений и матриц

Поменяем местами 3-й и 4-й столбцы и вычтем из последней строки 3-ю:

Приведение к ступенчатому виду уравнений и матриц

Вычислим минор 4-го порядка из столбцов 1,2,3 и 5:

Видео:Приведение матрицы к ступенчатому виду. Алгоритм ГауссаСкачать

Приведение матрицы к ступенчатому виду. Алгоритм Гаусса

Метод Гаусса приведения матрицы к ступенчатому виду

Элементарными преобразованиями матрицы называются следующие ее преобразования:

I. Перестановка двух столбцов (строк) матрицы.

II. Умножение всех элементов одного столбца (строки) матрицы на одно и то же число, отличное от нуля.

III. Прибавление к элементам одного столбца (строки) соответствующих элементов другого столбца (строки), умноженных на одно и то же число.

Матрица , полученная из исходной матрицы конечным числом элементарных преобразований, называется эквивалентной . Это обозначается .

Элементарные преобразования применяются для упрощения матриц, что будет в дальнейшем использоваться для решения разных задач.

Покажем, как при помощи элементарных преобразований можно привести матрицу к ступенчатому виду (рис. 1.4). Здесь высота каждой «ступеньки» составляет одну строку, символом 1 (единицей) обозначены единичные элементы матрицы, символом * — обозначены элементы с произвольными значениями, остальные элементы матрицы нулевые. К ступенчатому виду можно привести любую матрицу, причем достаточно использовать только элементарные преобразования строк матрицы .

Видео:Как привести матрицу к ступенчатому виду - bezbotvyСкачать

Как привести матрицу к ступенчатому виду - bezbotvy

Алгоритм приведения матрицы к ступенчатому виду

Чтобы привести матрицу к ступенчатому виду (рис. 1.4), нужно выполнить следующие действия.

1. В первом столбце выбрать элемент, отличный от нуля ( ведущий элемент ). Строку с ведущим элементом ( ведущая строка ), если она не первая, переставить на место первой строки (преобразование I типа). Если в первом столбце нет ведущего (все элементы равны нулю), то исключаем этот столбец, и продолжаем поиск ведущего элемента в оставшейся части матрицы. Преобразования заканчиваются, если исключены все столбцы или в оставшейся части матрицы все элементы нулевые.

2. Разделить все элементы ведущей строки на ведущий элемент (преобразование II типа). Если ведущая строка последняя, то на этом преобразования следует закончить.

3. К каждой строке, расположенной ниже ведущей, прибавить ведущую строку, умноженную соответственно на такое число, чтобы элементы, стоящие под ведущим оказались равными нулю (преобразование III типа).

4. Исключив из рассмотрения строку и столбец, на пересечении которых стоит ведущий элемент, перейти к пункту 1, в котором все описанные действия применяются к оставшейся части матрицы.

Пример 1.29. Привести к ступенчатому виду матрицы

Решение. В первом столбце матрицы выбираем ведущий элемент . Делим все элементы первой строки на (или, что то же 1 1. самое, умножаем на ):

Прибавим ко второй строке первую, умноженную на (-2):

Первый столбец и первую строку исключаем из рассмотрения. В оставшейся части матрицы имеется один элемент (-2), который выбираем в качестве ведущего. Разделив последнюю строку на ведущий элемент, получаем матрицу ступенчатого вида

Преобразования закончены, так как ведущая строка последняя. Заметим, что получившаяся матрица является верхней треугольной.

В первом столбце матрицы выбираем ведущий элемент . Меняем местами строки, ставя ведущую строку на место первой, и делим элементы ведущей строки на ведущий элемент 2:

Пункт 3 алгоритма делать не надо, так как под ведущим элементом стоит нуль. Исключаем из рассмотрения первую строку и первый столбец. В оставшейся части ведущий элемент — число 2. Разделив ведущую строку (вторую) на 2, получаем ступенчатый вид:

Преобразования закончены, так как ведущая строка последняя.

В первом столбце матрицы выбираем ведущий элемент . Первая строка — ведущая. Делим ее элементы на . Получаем

Ко второй и третьей строкам прибавим первую, умноженную на (-3) и на (-6) соответственно:

Обратим внимание на то, что полученная матрица еще не является матрицей ступенчатого вида, так как вторую ступеньку образуют две строки (2-я и 3-я) матрицы. Исключив 1-ю строку и 1-й столбец, ищем в оставшейся части ведущий элемент. Это элемент (-1). Делим вторую строку на (-1), а затем к третьей строке прибавляем ведущую (вторую), умноженную на 5:

Исключим из рассмотрения вторую строку и второй столбец. Поскольку исключены все столбцы, дальнейшие преобразования невозможны. Полученный вид — ступенчатый.

1. Говорят, что матрица имеет ступенчатый вид также и в случае, когда на месте ведущих элементов (обозначенных на рис. 1.4 единицей) стоят любые отличные от нуля числа.

2. Считается, что нулевая матрица имеет ступенчатый вид.

Пример 1.30. Привести к ступенчатому виду матрицу

Решение. Первый столбец матрицы — нулевой. Исключаем его из рассмотрения и исследуем оставшуюся часть (последние 5 столбцов):

Берем в качестве ведущего элемент . Прибавляем ко второй строке первую, умноженную на (-1); к третьей строке — первую, умноженную на (-2); к четвертой строке — первую, умноженную на (-4). Тем самым «обнуляются» все элементы второго столбца, расположенные ниже ведущего элемента:

Полученная матрица не имеет ступенчатого вида, так как одна из ступенек имеет высоту в три строки. Продолжаем преобразования. Первую строку и второй столбец исключаем из рассмотрения. Поскольку первый столбец в оставшейся части матрицы нулевой, исключаем его. Теперь оставшаяся часть матрицы — это матрица (размеров ), образованная элементами, расположенными в последних трех строках и трех столбцах полученной матрицы. В качестве ведущего элемента выбираем . К третьей строке прибавляем вторую. Получаем матрицу

Вторую строку и четвертый столбец исключаем из рассмотрения. Берем элемент в качестве ведущего. Делим третью строку на число 2 (умножаем на 0,5):

К четвертой строке прибавляем третью, умноженную на (-2):

Третью строку и четвертый столбец исключаем из рассмотрения. Поскольку в оставшейся части матрицы все элементы (один) нулевые, преобразования закончены. Матрица приведена к ступенчатому виду (см. рис. 1.4).

Замечание 1.9. Продолжая выполнять элементарные преобразования над строками матрицы, можно упростить ступенчатый вид, а именно привести матрицу к упрощенному виду (рис. 1.5).

Здесь символом 1 обозначены элементы матрицы, равные единице, символом * — обозначены элементы с произвольными значениями, остальные элементы матрицы нулевые. Заметим, что в каждом столбце с единицей остальные элементы равны нулю.

Пример 1.31. Привести к упрощенному виду матрицу

Решение. Матрица имеет ступенчатый вид. Прибавим к первой строке третью, умноженную на (-1), а ко второй строке третью, умноженную на (-2):

Теперь к первой строке прибавим вторую, умноженную на (-1). Получим матрицу упрощенного вида (см. рис. 1.5):

Замечание 1.10. При помощи элементарных преобразований (строк и столбцов) любую матрицу можно привести к простейшему виду (рис. 1.6).

Левый верхний угол матрицы представляет собой единичную матрицу порядка , а остальные элементы равны нулю. Считается, что нулевая матрица уже имеет простейший вид (при ).

Пример 1.32. Привести матрицу к простейшему виду.

Решение. В качестве ведущего элемента возьмем . Ко второй строке прибавим первую, умноженную на (-2):

Ко второму столбцу прибавим первый, умноженный на (-2), а к третьему -первый, умноженный на (-3):

Умножим все элементы последнего столбца на (-1) и переставим его на место второго:

Таким образом, исходная матрица при помощи элементарных преобразований приведена к простейшему виду (см. рис. 1.6).

Видео:Приведение матрицы к ступенчатому видуСкачать

Приведение матрицы к ступенчатому виду

Свойства элементарных преобразований матриц

Подчеркнем следующие свойства элементарных преобразований матриц .

Теорема 1.1 о приведении матрицы к ступенчатому виду . Любую матрицу при помощи элементарных преобразований ее строк можно привести к ступенчатому (или даже упрощенному) виду.

Следствие (о приведении матрицы к простейшему виду). Любую матрицу при помощи элементарных преобразований ее строк и столбцов можно привести к простейшему виду.

1. Преобразования, обратные к элементарным, являются элементарными . В самом деле, если в матрице поменяли местами два столбца (преобразование I типа), то исходную матрицу можно получить, еще раз поменяв местами эти столбцы. Если столбец матрицы умножили на число (преобразование II типа), то для получения исходной матрицы надо этот столбец умножить на обратное число . Если к i-му столбцу матрицы прибавили j-й столбец, умноженный на число , то для получения исходной матрицы достаточно к i-му столбцу матрицы прибавить j-й столбец, умноженный на противоположное число ( ).

2. В теореме 1.1 говорится о приведении матрицы к ступенчатому (упрощенному) виду при помощи элементарных преобразований только ее строк, не используя преобразования ее столбцов. Чтобы привести произвольную матрицу к простейшему виду (следствие теоремы 1.1), нужно использовать преобразования и строк, и столбцов матрицы.

3. Рассмотрим следующую модификацию пункта 3 метода Гаусса. Ведущий элемент, выбранный в п. 1 метода Гаусса, определяет ведущую строку и ведущий столбец матрицы (он находится на их пересечении). Делим все элементы ведущей строки на ведущий элемент (см. п.2 метода Гаусса). Прибавляя ведущую строку, умноженную на соответствующие числа, к остальным строкам матрицы (аналогично п.3 метода Гаусса), делаем равными нулю все элементы ведущего столбца, за исключением ведущего элемента. Затем, прибавляя полученный ведущий столбец, умноженный на соответствующие числа, к остальным столбцам матрицы, делаем равными нулю все элементы ведущей строки, за исключением ведущего элемента. При этом получаем ведущие строку и столбец, все элементы которых равны нулю, за исключением ведущего элемента, равного единице.

Модифицированный таким образом метод Гаусса называется методом Гаусса-Жордана . Его применение позволяет сразу получить простейший вид матрицы, минуя ее ступенчатый вид.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Виды матриц. Ступенчатый вид матрицы. Приведение матрицы к ступенчатому и треугольному виду

Приведение к ступенчатому виду уравнений и матриц

Матрица — это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к стандартному виду. Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Видео:Приведение определителя к треугольному видуСкачать

Приведение определителя к треугольному виду

Нулевой тип

Приведение к ступенчатому виду уравнений и матриц

Все компоненты этого вида матрицы — нули. Между тем, число ее строк и столбцов абсолютно различно.

Видео:§16 Приведение определителей к треугольному видуСкачать

§16 Приведение определителей к треугольному виду

Квадратный тип

Приведение к ступенчатому виду уравнений и матриц

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы «квадрат». Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2×2), четвертого порядка (4×4), десятого (10×10), семнадцатого (17×17) и так далее.

Видео:11. Ранг матрицыСкачать

11. Ранг матрицы

Вектор-стобец

Приведение к ступенчатому виду уравнений и матриц

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Вектор-строка

Приведение к ступенчатому виду уравнений и матриц

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Видео:Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnlineСкачать

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnline

Диагональный тип

Приведение к ступенчатому виду уравнений и матриц

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в левом верхнем углу, а заканчивается элементом в правом нижнем соответственно. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Приведение к ступенчатому виду уравнений и матриц

Видео:Ранг матрицыСкачать

Ранг матрицы

Единичная матрица

Приведение к ступенчатому виду уравнений и матриц

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Видео:Ранг матрицыСкачать

Ранг матрицы

Канонический тип

Приведение к ступенчатому виду уравнений и матриц

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Видео:Алгоритм приведения матрицы к треугольному видуСкачать

Алгоритм приведения матрицы к треугольному виду

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

Приведение к ступенчатому виду уравнений и матриц

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Видео:MathCad приведение матрицы к ступенчатому виду.wmvСкачать

MathCad приведение матрицы к ступенчатому виду.wmv

Ступенчатая матрица

Приведение к ступенчатому виду уравнений и матриц

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные «ступени» из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Видео:Определитель 5 порядка приводим к треугольному видуСкачать

Определитель 5 порядка приводим к треугольному виду

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно «сохранить» главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Видео:§23 Приведение матрицы к каноническому видуСкачать

§23 Приведение матрицы к каноническому виду

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Приведение к ступенчатому виду уравнений и матриц

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы — с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Далее займемся следующим значением — элементом второй строки первого столбца, числом 8. Умножим первую строку на четыре и вычтем ее из второй строки. Получим нуль.

Осталось только последнее значение — элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Приведение к ступенчатому виду уравнений и матриц

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, — с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Далее видим число 2 во второй строке. Повторяем операцию: умножаем верхнюю строку на два и вычитаем ее из второй.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 — элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части — с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) — элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число — 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Видео:Диагональный вид матрицы. Приведение матрицы к диагональному виду. Собственные векторыСкачать

Диагональный вид матрицы.  Приведение матрицы к диагональному виду.  Собственные векторы

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее «востребованным», чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Приведение к ступенчатому виду уравнений и матриц

Перед нами квадратная матрица третьего порядка (3×3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) — (1 x 1 x 4) — (2 x 3 x 0) — (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки — числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 — элемент второго столбца третьей строки — обратились в нуль.

Далее обращаем в нуль элемент второй строки первого столбца — число 3. Для этого умножаем верхнюю строку на три и вычитаем ее из второй.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) — 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Приведение к ступенчатому виду уравнений и матриц

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3×4. Начнем приведение также с элемента левого нижнего угла — числа (-1).

Прибавляем первую строку к третьей. Далее вычитаем из нее вторую, чтобы обратить число 5 в нуль.

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию — 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

📽️ Видео

Метод Гаусса. Элементарные преобразования. Ранг матрицы. Ступенчатая матрица. Эквивалентная матрицаСкачать

Метод Гаусса. Элементарные преобразования. Ранг матрицы. Ступенчатая матрица. Эквивалентная матрица

Как найти ранг матрицы (пример) - bezbotvyСкачать

Как найти ранг матрицы (пример) - bezbotvy

Приведение матрицы к треугольному видуСкачать

Приведение матрицы к треугольному виду
Поделиться или сохранить к себе: