Приведение к однородному заменой дифференциальные уравнения

Дифференциальные уравнения первого порядка, приводящиеся к однородным

Приведение к однородному заменой дифференциальные уравнения

К однородным уравнениям первого порядка приводится уравнение вида:
(1) ,
где f – функция.

Видео:6. Дифференциальные уравнения, приводящиеся к однороднымСкачать

6. Дифференциальные уравнения, приводящиеся к однородным

Как определить, что дифференциальное уравнение приводится к однородному

Для того, чтобы определить, что дифференциальное уравнение приводится к однородному, нужно выделить две линейные формы:
a 1 x + b 1 y + c 1 , a 2 x + b 2 y + c 2 ,
и выполнить замену:
a 1 x + b 1 y + c 1 → t ( a 1 x + b 1 y + c 1 ) ;
a 2 x + b 2 y + c 2 → t ( a 2 x + b 2 y + c 2 ) .
Если, после преобразований, t сократится, то это уравнение приводится к однородному.

Пример

Определить, приводится ли данное дифференциальное уравнение к однородному:
.

Выделяем две линейные формы:
x + 2 y + 1 и x + 4 y + 3 .
Первую заменим на t ( x + 2 y + 1) , вторую – на t ( x + 4 y + 3) :
.
По свойству логарифма:

.
t сокращается:
.
Следовательно, это уравнение приводится к однородному.

Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)

Решение дифференциального уравнения, приводящегося к однородному уравнению

Решаем систему уравнений:
(2)

Здесь возможны три случая.

1) Система (2) имеет бесконечное множество решений (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 совпадают). В этом случае
;
.
Тогда
.
Это простейший вид уравнения с разделяющимися переменными:
.
Его решение:
y = Ax + C .

2) Система (2) не имеет решений (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 параллельны). В этом случае a 1 b 2 = a 2 b 1 .
Применим это соотношение.

.

Это означает, что a 2 x + b 2 y + c 2 является функцией от a 1 x + b 1 y + c 1 . Поэтому является функцией от a 1 x + b 1 y + c 1 . То есть f является функцией от a 1 x + b 1 y + c 1 . Обозначим такую функциею как g . Тогда исходное уравнение (1) имеет вид:
.
Это уравнение приводится к уравнению с разделяющимися переменными подстановкой
z = a 1 x + b 1 y + c 1 .

3) Система (2) имеет одно решение (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 пересекаются в одной точке). Обозначим это решение как x 0 , y 0 . Тогда
(3)
Делаем подстановку x = t + x 0 , y = u + y 0 , где u – это функция от t . Тогда
dx = dt, dy = du ;

.
Или
.
Это однородное дифференциальное уравнение первого порядка. Оно решается подстановкой u = z t , где z – это функция от t .

Видео:Однородное дифференциальное уравнениеСкачать

Однородное дифференциальное уравнение

Пример решения дифференциального уравнения, приводящегося к однородному уравнению первого порядка

Решить уравнение
(П.1) .

1) Проверим, приводится ли это дифференциальное уравнение к однородному. Для этого выделяем две линейные формы:
2 x – y + 4 и x – 2 y + 5 .
Первую заменим на t (2 x – y + 4) , вторую – на t ( x – 2 y + 5) :
.
Делим на t :
.
t сократилось, поэтому это уравнение приводится к однородному.

2) Решаем систему

Из первого уравнения y = 2 x + 4 . Подставляем во второе:
x – 2(2 x + 4) + 5 = 0 ;
x – 4 x – 8 + 5 = 0 ;
– 3 x = 3 ;
x = – 1 ;
y = 2 x + 4 = 2·(–1) + 4 = 2 .
Итак, мы нашли решение системы:
x 0 = –1 , y 0 = 2 .

3) Делаем подстановку:
x = t + x 0 = t – 1 ;
y = u + y 0 = u + 2 ,
где u – функция от t . dx = dt, dy = du , ;
;
.
Подставляем в (П.1):
(П.2) .
Это – однородное уравнение.

4) Решаем однородное уравнение (П.2). Делаем подстановку:
u = z · t , где z – функция от t .
u′ = ( z · t ) ′ = z′t + z t′ = z′t + z .
Подставляем в (П.2):
.
Сокращаем на t и выполняем преобразования:
;
;
.
Разделяем переменные – умножаем на dt и делим на t ( z 2 – 1) . При z 2 ≠ 1 получаем:
.
Интегрируем:
(П.3) .
Вычисляем интегралы:
;

.
Подставляем в (П.3):
.
Умножим на 2 и потенцируем:
;
.
Заменим постоянную e 2 C → C . Раскроем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C . Умножим на ( z + 1) 2 и применим формулу: z 2 – 1 = ( z – 1)( z + 1) .
.
Сократим на ( z – 1) :
.
Возвращаемся к переменным u и t , используя формулу: u = z t . Для этого умножим на t :
;
;
.
Возвращаемся к переменным x и y , используя формулы: t = x + 1 , u = y – 2 .
;
(П.4) .

Теперь рассмотрим случай z 2 = 1 или z = ±1 .
;
.
Для верхнего знака «+» имеем:
;
.
Это решение входит в общий интеграл (П.4) при значении постоянной C = 0 .
Для нижнего знака «–»:
;
.
Эта зависимость также является решением исходного дифференциального уравнения, но не входит в общий интеграл (П.4). Поэтому к общему интегралу добавим решение
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 30-07-2012 Изменено: 22-06-2015

Видео:Дифференциальные уравнения 1-го порядка, приводящиеся к однородным (практика)Скачать

Дифференциальные уравнения 1-го порядка, приводящиеся к однородным (практика)

Однородные дифференциальные уравнения
и приводящиеся к ним

Видео:Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать

Дифференциальные уравнения, 3 урок, Однородные уравнения

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

Как решать дифференциальные уравнения, приводящиеся к однородным

Некоторые уравнения могут быть приведены к однородным. Дифференциальные уравнения, приводящиеся к однородным, имеют вид:

Приведение к однородному заменой дифференциальные уравнения

либо в другой форме записи

Приведение к однородному заменой дифференциальные уравнения

Рассмотрим три возможных случая.

Приведение к однородному заменой дифференциальные уравнения

Собственно, это и есть дифференциальные уравнения, приводящиеся к однородным, поскольку в двух других случаях переходим непосредственно к уравнениям с разделяющимися переменными. Такие уравнения решают с помощью замены переменных.

В этом случае решаем систему уравнений

Приведение к однородному заменой дифференциальные уравнения

Отсюда находим значения α и β и делаем замену

Приведение к однородному заменой дифференциальные уравнения

Откуда dx=du, dy=dv, y’=dv/du. Эта замена позволяет нам получить однородное дифференциальное уравнение 1-го порядка.

Приведение к однородному заменой дифференциальные уравнения

решаем систему уравнений

Приведение к однородному заменой дифференциальные уравнения

Откуда α=-4, β=-3. Замена

Приведение к однородному заменой дифференциальные уравнения

dx=du, dy=dv. Подставляем и упрощаем:

2udu+(3v-5u)dv=0. Это однородное дифференциальное уравнение 1-го порядка относительно переменных u и v. Выполняем замену z=v/u,откуда v=uz, dv=zdu+udz. Подставляем:

(2udu+3uz²du-5uzdu)+(3u²zdz-5u²dz)=0. Делим обе части на u≠0:

(2+3z²-5z)du+(3z-5)dz=0. Получили уравнение с разделяющимися переменными. Разделяем переменные: u(3z-5)dz=-(2+3z²-5z)du. Для этого делим обе части на u(2+3z²-5z)≠0, имеем:

Приведение к однородному заменой дифференциальные уравнения

Приведение к однородному заменой дифференциальные уравнения

В правой части — табличный интеграл. Рациональную дробь в левой части раскладываем на простые множители:

Приведение к однородному заменой дифференциальные уравнения

Приведение к однородному заменой дифференциальные уравнения

Приведение к однородному заменой дифференциальные уравнения

Применяем свойства логарифмов:

Приведение к однородному заменой дифференциальные уравнения

теперь — обратная замена

Приведение к однородному заменой дифференциальные уравнения

Приведение к однородному заменой дифференциальные уравнения

Приведение к однородному заменой дифференциальные уравнения

Геометрический смысл такой замены: начало координат переносится в точку пересечения прямых

Приведение к однородному заменой дифференциальные уравнения

и в новой системе свободные члены в уравнениях прямых равны нулю.

Перейдем к рассмотрению двух других случаев решения дифференциальных уравнений такого вида.

📽️ Видео

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейное дифференциальное уравнение Коши-Эйлера

10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать

Однородное линейное дифференциальное уравнение. Алгоритм решения

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline
Поделиться или сохранить к себе: