Примеры уравнений на сложение и вычитание умножение и деление

Решение сложных уравнений. 3 класс.

Примеры уравнений на сложение и вычитание умножение и деление

Овладение детьми способом решения уравнений в начальной школе создает прочную основу для дальнейшего обучения алгебры, химии, физики и других предметов.

Начиная с 3-го класса, ученикам встречаются сложные уравнения, но справиться с ними очень просто.

Дети уже умеют решать простые уравнения, читай об этом здесь.

А эта статья будет посвящена решению сложных уравнений в 2-3 действия.

Очень часто родители, желая помочь, объясняют так: вот смотри, сейчас вот это число перенести в другую часть от знака равенства, надо поменять знак на противоположный: было умножение, меняем на деление; было сложение меняем на вычитание.

В начальной школе это объяснение не срабатывает, т.к. ребенок не знаком с законами алгебры.

Как сложное уравнение привести к тому, которые мы уже умеем решать, а именно к уравнению в 1 действие?

Рассмотрим уравнение в 2 действия:

х + 56 = 98 — 2 — оно достаточно легкое.

Здесь особого труда не будет в решении, потому что ребенок сразу догадается, что сначала надо 98-2.

х + 56 = 98 — 2

х + 56 = 96 – это простое уравнение. А его решаем очень быстро!

Сейчас мы рассмотрим уравнение:

Такое уравнение можно решить несколькими способами.

  1. У нас здесь неизвестное число х. Мы не знаем, что спрятано за этим числом.

А когда к х + 5 – это число тоже известно.

Закроем его и пусть это будет другое число, например b .

Мы видим, что у нас получилось самое простое уравнение в 1 действие.

2 • b = 30

А чтобы найти а, нам нужно 30 : на 2.

А b не что иное, как х + 5.

х + 5 = 30 : 2

х + 5 = 15

х = 15 – 5

х = 10

Проверку делаем как обычно: переписываем первое уравнение: 2 • (10 + 5) = 30.

30 – переписываем, а левую часть считаем — будет 30.

30 = 30, значит, уравнение решили правильно.

При решении таких сложных уравнений самое главное – понять, что заменить на другое неизвестное число. Когда в уравнении всего 2 действия – это очень просто.

  1. Более удобно и понятно, как показывает практика, если использовать решение сложных уравнений на основе зависимости между компонентами действий.

Наше уравнение 2 • (х + 5) = 30 читаем так: число 2 умножить на сумму х и пяти, получится 30. В данном случае – нам неизвестна сумма, чтобы ее найти, надо 30:2.

48 : (16 – а) = 4.

Если опять заменять часть уравнения другим неизвестным числом, можно запутаться. Поэтому легче использовать взаимосвязи компонентов и результата действия: число 48 разделить на разность.

Нам неизвестна разность, поэтому сначала нужно узнать чему она равна. Надо 48 : 4.

16 — а = 48 : 4

16 — а = 12 – это простое уравнение.

а = 16 — 12

а = 4

Проверка: 48 : (16 — 4) = 4

Давайте посмотрим еще одно:

Из 96 надо вычесть разность с и 16. Чтобы найти разность, надо 96-94.

Проверка: 96 — (16 — 14) = 94

А сейчас мы переходим к тем уравнениям, у которых не 2, а 3 действия. Как же нам поступать в этом случае? При решении таких сложных уравнения используем знания порядка выполнения действий в выражениях со скобками и без них.

Рассмотрим уравнение: 36 – (8 • у + 5) = 7

Прежде всего, нужно внимательно оценить левую часть уравнения: ту, которая с неизвестным числом. Вы должны четко себе представить какое вы будете делать действие первым, какое – вторым, какое – третьим: сначала делается умножение, потом сложение и последним – вычитание.

И вот то, которое вы будете делать третьим, с него и начнем, т.е. начинаем упрощать уравнение с последнего действия. Последнее действие – вычитание. С него и начнем: из числа 36 вычесть то, что в скобках и получим 7.

Значит, то что в скобках – вычитаемое, чтобы его найти, надо 36 — 7.

По правилам математики в данной записи скобки – не ставим.

8 • у + 5 = 29 – уравнение сложное. Нужно его упростить. Данное уравнение читаем так: к произведению 8 и у прибавили 5 и получилось 29. Нам неизвестно произведение, чтобы его найти, надо 29-5.

8 • у = 24 – это уравнение простое.

Проверка: 36 — (8 • у + 5) = 7 . Правую часть – 7 — переписываем, а левую считаем.

Итак: 7 = 7. Значит, уравнение решили правильно.

(36 + d) : 4 + 8 = 18. Определяем порядок действий: первое – сложение в скобках, второе – деление, третье сложение вне скобок. Значит, все, что до 8 – это первое слагаемое, чтобы его найти, надо 18 — 8

(36 + d) : 4 = 18 — 8

(36 + d) : 4 = 10 – уравнение сложное, теперь последнее действие — :, значит

36 + d = 40 – уравнение простое и его мы решаем легко!

Для удобства и быстроты решения сложных уравнений можете пользоваться данной памяткой

Примеры уравнений на сложение и вычитание умножение и деление

Дело в том, что при кажущейся сложности, если внимательно изучить все приемы, которые я вам сегодня показала, эти уравнения дети будете щелкать как семечки. Обязательно напишите в комментариях, какой способ вам более удобен.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 5 / 5. Количество оценок: 59

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Примеры по действиям с многозначными числами для 4 класса

Подборка примеров со скобками на порядок действий для отработки вычислительных навыков.

Цель: формирование умения определять порядок выполнения действий в числовых выражениях со скобками.

Данную подборку примеров на порядок действий можно для удобства разделить на карточки по 5 штук. Чтобы достичь хороших результатов каждый день нужно решать именно такое количество. Ответы на примеры с многозначными числами даны для самоконтроля учащихся.

Ранее мы разбирали алгоритм решения примеров на порядок действий в 3-4 классе со скобками и без.

Вспомним алгоритм решения примеров на порядок действий со скобками:

Главное правило: если в примере есть скобки, то сначала выполняем действия в скобках, затем умножение и деление, и потом — сложение и вычитание начиная слева направо.

  1. При решении примера сначала избавьтесь от скобок.
  2. Вычислите и запишите полученный результат на месте скобок.
  3. Выполните действия по порядку.

Разберем порядок вычисления примера со скобками пошагово:

Примеры уравнений на сложение и вычитание умножение и деление Пример

  1. Определим порядок действий и запишем их над арифметическими знаками.
  2. Найдём значение выражения, заключённого в скобках: сначала умножение или деление, потом сложение или вычитание слева направо.
  3. Приступим к действиям вне скобок/можно решать одновременно.

16 : 2 + (5 ⋅ 7 – 13) – 48 : 6 = 8 + (35 – 13) – 8 = 8 + 22 – 8 = 22.

Примеры на порядок действий со скобками (сложение, вычитание, умножение, деление)

Задание: расставь порядок действий и найди значение выражения.

  1. 9464 : 91 + (926 * 50 – 9601) =
  2. 3091 – 9 * (161 + 42) + 1791 =
  3. (349 + 636 : 6) + 9914 – 412 =
  4. (2340 : 5 + 932) : 50 =
  5. 801 + (8049 – 818) * 4 =
  6. 3402 + (1334 : 23 + 7026) =
  7. 81 * 13 + (6043 – 5711) : 2 =
  8. 71 * 38 + (322 * 2 + 7011) =
  9. (744 + 256) : 50 + 724 =
  10. (1561 + 2810) – (2004 + 2330 : 5) =
  11. 550 : (610 – 555) + 292 * 31 =
  12. (859 + 99) – 141 * 5 + 200 =
  13. 71 * 265 – (1554 : 74 + 375) =
  14. (2011 + 9411) + 6633 : 33 =
  15. 462 : (560 – 546) * 27 + 521 =
  16. 1908 : 12 * (1093 – 809) =
  17. (6105 : 5 — 450) + 613 – 105 =
  18. 964 + (6643 – 5963) * 155 =
  19. 112 * 49 – (1478 + 2411) – 322 =
  20. 9726 – (1430 – 86) : 42 – 2016 =
  21. 1390 : (528 – 518) + (9493 + 185) =
  22. 3012 + (3010 – 2110) * 6 + 411 =
  23. 8505 : 21 + (1585 – 914) : 61 =
  24. 351 * 0 + (1137 + 9120) : 3 =
  25. (7196 – 1750) + (5310 : 5 + 2822) =
  26. (4278 : 93 + 924 : 42) + 631 =
  27. 714 : 7 + (9756 – 4197) : 3 =
  28. (5861 + 14) : 25 + (234 + 390) =
  29. (1117 + 3250) – 132 * 13 =
  30. (96 * 214 – 14) + (4126 + 54) : 2 =

Ответы на примеры по действиям с многозначными числами:

Видео:Все действия с десятичными дробями (Сложение, вычитание, деление и умножение)Скачать

Все действия с десятичными дробями (Сложение, вычитание, деление и умножение)

Порядок действий в математике

Примеры уравнений на сложение и вычитание умножение и деление

О чем эта статья:

Видео:Сложение и вычитание многочленов. Алгебра, 7 классСкачать

Сложение и вычитание многочленов. Алгебра, 7 класс

Основные операции в математике

Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше ( );

меньше ( Примеры уравнений на сложение и вычитание умножение и деление

Вычитание — действие, обратное сложению.

Запись вычитания: 10 — 1 = 9, где 10 — уменьшаемое, 1 — вычитаемое, 9 — разность.

Примеры уравнений на сложение и вычитание умножение и деление

Если разность 9, сложить с вычитаемым 1, то получится уменьшаемое 10. Операция сложения 9 + 1 = 10 является контрольной проверкой вычитания 10 — 1 = 9.

Умножение — арифметическое действие в виде краткой записи суммы одинаковых слагаемых.

Запись: 3 * 4 = 12, где 3 — множимое, 4 — множитель, 12 — произведение.

Примеры уравнений на сложение и вычитание умножение и деление

3 × 4 = 3 + 3 + 3 + 3, то есть число 3 сложили 4 раза само с собой.

Примеры уравнений на сложение и вычитание умножение и деление

В случае, если множимое и множитель поменять ролями, произведение остается одним и тем же. Например: 5 × 2 = 5 + 5 = 10 и 2 × 5 = 2 + 2 + 2 + 2 + 2 = 10.

Поэтому и множитель, и множимое называют сомножителями.

Деление — арифметическое действие обратное умножению.

Запись: 30 : 6 = 5 или 30/6 = 5, где 30 — делимое, 6 — делитель, 5 — частное.

Примеры уравнений на сложение и вычитание умножение и деление

В этом случае произведение делителя 6 и частного 5 в качестве проверки дает делимое 30.

Сложение и вычитание, умножение и деление попарно представляют обратные друг другу действия. А теперь давайте узнаем порядок выполнения арифметических действий.

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Порядок вычисления простых выражений

Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:

действия выполняются по порядку слева направо

сначала выполняется умножение и деление, а затем — сложение и вычитание.

Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.

Что первое, умножение или деление? — По порядку слева направо.

Сначала умножение или сложение? — Умножаем, потом складываем.

Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Рассмотрим порядок арифметических действий в примерах.

Пример 1. Выполнить вычисление: 11 − 2 + 5.

В нашем выражении нет умножения, деления и скобок, поэтому выполняем все действия слева направо. Сначала вычтем два из одиннадцати:

Затем прибавим к результату пять и в итоге получим четырнадцать:

Вот запись всего решения: 11 − 2 + 5 = 9 + 5 = 14.

Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 × 7 : 5?

Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Сначала выполняем деление десяти на два:

Теперь результат умножаем на семь:

И получившееся в число делим на пять:

Запись всего решения выглядит так: 10 : 2 × 7 : 5 = 5 × 7 : 5 = 35 : 5 = 7.

Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.

Например, в такой последовательности можно решить пример по действиям:

Примеры уравнений на сложение и вычитание умножение и деление

Видео:Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математика

Действия первой и второй ступени

В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.

Действиями первой ступени называют сложение и вычитание, а умножение и деление — действиями второй ступени.

С этими терминами правило определения порядка выполнения действий звучит так:

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).

Примеры уравнений на сложение и вычитание умножение и деление

Видео:8 ЛОГИЧЕСКИХ ЗАГАДОК ДЛЯ САМЫХ УМНЫХ! Насколько хорошо развит твой мозг?Скачать

8 ЛОГИЧЕСКИХ ЗАГАДОК ДЛЯ САМЫХ УМНЫХ! Насколько хорошо развит твой мозг?

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Пример 1. Вычислить: 10 + (8 − 2 × 3) × (12 − 4) : 2.

Как правильно решить пример:

Сначала определим порядок действий. Выражение содержит скобки, поэтому сначала будем выполнять действия в выражениях, которые заключены в эти скобки.

Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание.

Итак, мы определили первые три действия:

Примеры уравнений на сложение и вычитание умножение и деление

Когда выполнены все действия в скобках, по правилу дальше мы должны выполнить умножение и деление, и в последнюю очередь — сложение. Теперь мы знаем, в каком порядке решать пример:

Примеры уравнений на сложение и вычитание умножение и деление

Осталось решить пример по действиям:

  1. 2 × 3 = 6
  2. 8 − 6 = 2
  3. 12 − 4 = 8
  4. 2 × 8 = 16
  5. 16 : 2 = 8
  6. 10 + 8 = 18

На этом все действия выполнены.

Ответ: 10 + (7 − 2 × 3) × (12 − 4) : 2 = 18.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 × (2 + 3)).

Для начала определим порядок действий

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 × (2 + 3). Но это выражение также содержит скобки, поэтому начнем сначала с действий в них:

Примеры уравнений на сложение и вычитание умножение и деление

Теперь перейдем к выражению во внешних скобках. Первым действием по правилу будет умножение, а затем слева направо — две операции сложения:

Примеры уравнений на сложение и вычитание умножение и деление

И последним действием останется выполнить сложение:

🔍 Видео

Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫСкачать

как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫ

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Порядок выполнения действий в выражениях. Числовые выраженияСкачать

Порядок выполнения действий в выражениях. Числовые выражения

Быстрый и простой способ выучить таблицу умножения. Как школьнику выучить таблицу умножения.Скачать

Быстрый и простой способ выучить таблицу умножения. Как школьнику выучить таблицу умножения.

0+ Сложение и вычитание для детей. Занимательная математика. Уроки для малышей. Примеры. Урок 6.Скачать

0+ Сложение и вычитание для детей. Занимательная математика. Уроки для малышей. Примеры. Урок 6.

Произведение одночлена и многочлена. Умножение одночлена и многочлена. 7 класс.Скачать

Произведение одночлена и многочлена. Умножение одночлена и многочлена. 7 класс.

Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

7 класс, 21 урок, Сложение и вычитание многочленовСкачать

7 класс, 21 урок, Сложение и вычитание многочленов

Математика порядок действий с умножением и делениемСкачать

Математика порядок действий с умножением и делением

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение сложных уравнений 4-5 класс.Скачать

Решение сложных уравнений 4-5 класс.

Решение уравнений на умножение и деление.Скачать

Решение уравнений на умножение и деление.
Поделиться или сохранить к себе: