В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые в полярной системе координат: табуляция функции, построение графика, переход к уравнению в декартовой системе координат т.п.
Основные этапы при работе с кривой, заданной в полярной системе координат, такие:
- 1. Построить полярную систему координат (изобразить полюс, полярную ось и угловые направления). Обычно строят вспомогательные лучи через $pi/6$ или $pi/8$ радиан, для большинства кривых этих точек (получается от $0$ до $2pi$ помещается 12 или 16 значений) вполне достаточно.
- 2. Табулируем кривую: берем последовательно все углы $phi$ (см. выше): $0$, $pi/8$, $pi/4$, $3pi/8$. и в каждой точке вычисляем значение $rho(phi)$. Заносим значения в таблицу.
- 3. Берем начерченную в первом пункте полярную систему координат и наносим точки. На полярной оси отмеряем значние $rho(0)$, на луче $pi/8$ — $rho(pi/8)$ и так далее.
- 4. Соединяем все точки плавной линией. Получается искомая кривая. Для проверки правильности можно построить дополнительно график с помощью онлайн-сервисов.
- 5. Если требуется найти уравнение кривой в декартовой системе координат, подставляем подходящие формулы $rho=sqrt$, $x=rhocos phi$, $y=rhosin phi$ и преобразуем.
Более подробно — в примерах ниже. Удачного изучения!
- Полярная система координат: решения онлайн
- Полярные координаты — определение и вычисление с примерами решения
- Полярные координаты. параметрические уравнения линии
- Полярные координаты
- Связь между прямоугольными и полярными координатами
- Параметрические уравнения линии
- Параметрические уравнения циклоиды
- Полярная система координат
- Замечательные кривые
- Логарифмическая спираль
- Кардиоида
- Астроида
- Строфоида
- Декартов лист
- Циссоида
- Циклоида
- Кохлеоида
- 📺 Видео
Видео:Построение кривой в полярной системе координатСкачать
Полярная система координат: решения онлайн
Задача 1. Построить следующие кривые в полярной системе координат: Лемниската Бернулли $rho^2=2cos 2phi$ (полюс помещен в точку О).
Задача 2. Построить по точкам кривую, заданную уравнением в полярной системе координат $rho=2sin 2phi$. Найти уравнение кривой в прямоугольной системе координат, начало которой совмещено с полюсом, а положительная полуось $Ox$ с полярной осью.
Задача 3. Дана линия своим уравнением в полярной системе координат $r=8 sin phi$. Требуется:
1) построить линию по точкам, давая $phi$ значения через $pi/6$, начиная с 0 до $2pi$.
2) Найти уравнение этой линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью.
Задача 4. Линия задана уравнением $r=18/(4+5cos phi)$ в полярной системе координат. Требуется:
Построить линию по точкам, начиная от 0 до $2pi$ и придавая $phi$ значения через промежуток $pi/8$.
Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.
Назвать линию, найти координаты фокусов и эксцентриситет.
Видео:§30 Уравнения кривых второго порядка в полярных координатахСкачать
Полярные координаты — определение и вычисление с примерами решения
Содержание:
Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
Полярные координаты. параметрические уравнения линии
Полярные координаты
Основная идея метода координат состоит в том, что положение точки на плоскости однозначно определяется с помощью двух чисел. Конкретный геометрический смысл этих чисел дает ту или иную систему координат. Наиболее важной после прямоугольной системы, исключительно употреблявшейся нами до сих пор, является полярная система координат, к рассмотрению которой мы и переходим.
Возьмем на плоскости точку О, которую назовем полюсом. Проведем из полюса О направленную полупрямую Ох, называемую полярной осью (рис. 41).
Пусть М — произвольная точка плоскости. Соединим точку М с полюсом О отрезком ОМ. Длина отрезка ОМ = р называется полярным радиусом точки М, а угол
Точка М с полярными координатами риф записывается следующим образом: М (р, ф), причем на первом месте ставится полярный радиус р, а на втором — полярный угол ф.
Что касается значений, принимаемых полярными координатами, то достаточно, очевидно, рассматривать значения р от 0 до и значения ф от 0 до , при этом, как мы условились, угол ф отсчитывается от полярной оси против хода часовой стрелки. Однако в некоторых вопросах приходится рассматривать углы, большие , а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по направлению движения часовой стрелки.
Связь между прямоугольными и полярными координатами
Рассмотрим переход от полярных координат к прямоугольным и обратно.
Предположим, что полюс полярной системы совпадает с началом прямоугольной системы координат Оху, а полярная ось является положительной полуосью Ох (рис. 42).
Тогда для произвольной точки М имеем
Считая угол ф острым, из прямоугольного треугольника АОМ находим
Полученные формулы справедливы для любого угла ф. Так выражаются прямоугольные координаты точки М через ее полярные координаты. Далее, из этого же прямоугольного треугольника АОМ получаем
Так выражаются полярные координаты точки через ее прямоугольные координаты.
Заметим, что при определении полярного угла ф по tg ф нужно учитывать знаки координат х и у.
Ранее мы видели, что линии могут быть заданы с помощью уравнений, связывающих их текущие прямоугольные координаты. Покажем теперь на простейшем примере, что линии могут определяться и уравнениями относительно полярных координат.
Пример:
Рассмотрим кривую , где а — некоторое положительное число. Эта кривая называется спиралью Архимеда. Для ее построения составляем таблицу соответственных значений ф и р:
По этой таблице наносим точки и соединяем их линией, уточняя, если в этом есть необходимость, положение промежуточных точек (рис. 43).
Параметрические уравнения линии
Иногда бывает удобнее вместо уравнения линии, связывающего прямоугольные координаты , рассматривать так называемые параметрические уравнения линии, дающие выражения текущих координат х и у в виде функций от некоторой переменной величины t (параметра). Параметрические уравнения играют важную роль, например, в механике, где координаты х и у движущейся точки М (х, у) рассматриваются как функции времени (уравнения движения).
Пример:
Выведем параметрические уравнения окружности.
Пусть М — произвольная точка окружности радиуса R с центром в начале координат (рис. 44). В определяемом ею прямоугольном треугольнике АОМ обозначим угол хОМ через t. Тогда, очевидно, будут иметь место равенства
Это и есть параметрические уравнения окружности.
Чтобы получить обычное уравнение окружности, нужно исключить параметр t. Для этого возводим уравнения (1) в квадрат и складываем их:
Пример:
Выведем параметрические уравнения эллипса.
Эллипс с полуосями а и b можно рассматривать как равномерно сжатую вдоль вертикального диаметра окружность радиуса а, где коэффициент сжатия k = b/a. Пусть М (х, у) — точка эллипса, N (X, У) — соответствующая точка окружности (рис. 45), где
За параметр t примем угол, образованный радиусом ON окружности с положительным направлением оси Ох: . Используя формулы (2), имеем
Таким образом, параметрические уравнения эллипса с полуосями а и b есть
Исключив из уравнений (3) параметр получим каноническое уравнение эллипса
Имея параметрические уравнения линии, можно по точкам построить ее.
Пример:
Решение:
Составляем таблицу значений:
Нанося точки с соответствующими координатами (х, у) на плоскость Оху и соединяя их линией, получим искомую кривую (рис. 46).
Эта кривая— парабола. В самом деле, исключив параметр t из уравнений (4), получим т. е. каноническое уравнение параболы.
Параметрические уравнения циклоиды
Определение: Циклоидой называется кривая, описываемая точкой окружности, катящейся без скольжения по прямой линии (рис. 47).
Выведем параметрические уравнения циклоиды, приняв прямую за ось Ох, предполагая, что радиус катящейся окружности равен айв начальном положении движущаяся точка М совпадает с началом координат. За параметр t примем угол поворота (в радианах) подвижного радиуса МС окружности относительно вертикального радиуса КС, где К — точка касания окружности с осью Ох (рис. 47). Так как качение окружности происходит без скольжения, то, очевидно, имеем
Отсюда на основании рис. 47 для координат текущей точки М циклоиды получаем следующие выражения:
Таким образом, параметрические уравнения циклоиды есть
Полярная система координат
Определение 1. Рассмотрим плоскость с прямоугольной декартовой системой координат Оху . Пусть М(х, у) – точка на плоскости, M ≠ 0. Полярными координатами точки М называются числа r − длина ее радиус-вектора (полярный
радиус) и ϕ − угол, образованный радиус-вектором с положительным направлением оси Ох (полярный угол), . Точка О при этом называется
полюсом, а полуось Ох – полярной осью.
Замечание. Зависимость между прямоугольными (х, у) и полярными ( , ) r ϕ
координатами точки М задается в виде: (1)
Рис.1. Полярные координаты точки.
Полярный полюс О и полярную ось можно выбрать на плоскости и не вводя
прямоугольную систему координат:
Пример 1.
Построим на плоскости линию, заданную уравнением:
− лемниската.
Решение.
Вычислим значения r при различных значениях ϕ :
Проводим лучи из начала координат под углами ϕ к оси Ох и на них откладываем
отрезки длины r , получим :
Рис.3. Лемниската
Пример 2.
а) Построим кривую − кардиоида. Рассуждая, как в примере 1 получим:
Замечание. Если в определении 1 отбросить требование 0 ≤ ϕ 0, то формулы (1) будут задавать непрерывное отображение точек плоскости (O, r, ϕ) на точки плоскости (x, O, y).
При этом, если r > 0, то векторы сонаправлены, если r
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Видеоурок "Полярная система координат"Скачать
Замечательные кривые
Семейство роз Гранди
Уравнение имеет вид:
a — радиус лепестка;
k — положительный параметр, отвечает за количество лепестков.
Рисунок 1 — роза с тремя лепестками ρ=sin3φ
Рисунок 2 — роза с 16 лепестками ρ=sin8φ
Рисунок 3 — семейство роз Гранди — напоминает ромашку ρ=sin20φ
Рисунок 4 — семейство роз Гранди — линия похожа на зрачок глаза ρ=sin100φ
Видео:Скорость и ускорение точки в полярных координатахСкачать
Логарифмическая спираль
Уравнение логарифмическая спираль (трансцендентная кривая) в полярных координатах:
Видео:Полярная система координатСкачать
Кардиоида
Уравнение кардиоиды (перев. греч. сердце и вид) в полярных координатах:
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Астроида
Уравнение астроиды (перев. греч. звезда и вид) :
x 2/3 + y 2/3 = a 2/3
Видео:Полярная система координат.Скачать
Строфоида
Уравнение строфоиды (перев. греч. крученая лента, поворот) :
y 2 (a — x)= x 2 (a + x)
Уравнение строфоиды в полярной системе координат:
Видео:Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать
Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать
Декартов лист
Уравнение декартова листа :
x 2 + y 2 — 3axy = 0
Уравнение декартова листа в полярной системе координат:
Видео:Занятие 01. Часть 3. Полярная система координатСкачать
Циссоида
Уравнение циссоиды Диоклеса (перев. греч. плющ, вид) в прямоугольной системе координат :
Параметрическое уравнение циссоиды:
x = a t 2 /(1 + t 2 )
x = a t 3 /(1 + t 2 )
Уравнение циссоиды в полярной системе координат:
Видео:Полярная система координатСкачать
Циклоида
Параметрическое уравнение циклоиды :
Видео:Составляем уравнение прямой по точкамСкачать
Кохлеоида
Уравнение кохлеоиды (трансцендентная кривая) в полярных координатах:
Лемниската Бернулли
Уравнение лемниската Бернулли в прямоугольных координатах:
(x 2 + y 2 ) 2 = a 2 (x 2 — y 2 )
Уравнение лемниската Бернулли в полярных координатах:
Архимедова спираль рассмотрена здесь подробно.
Применяя математические уравнения замечательных кривых, можно получить вот такие геометрические линии.
📺 Видео
Построение графика функции в полярных координатахСкачать
Площадь фигуры через двойной интеграл в полярных координатахСкачать
Двойной интеграл в полярных координатахСкачать
Видеоурок "Уравнение прямой, проходящей через две точки"Скачать
Полярные координаты. Полярное уравнение эллипса.Скачать
Глаза гипножабы и площадь фигур в полярной системе координатСкачать
Оператор Лапласа в полярных координатахСкачать