Примеры систем уравнений и неравенств

Системы уравнений и неравенств

Если какие-либо уравнения или неравенства объединены фигурной скобкой в систему, то предполагается, что они должны быть выполнены одновременно, т.е. решениями системы могут быть только такие значения неизвестных, которые удовлетворяют всем уравнениям и неравенствам, входящим в систему.

Если система уравнений или неравенств имеет решения, то говорят, что она совместна, если она решений не имеет, то — несовместна.

Системы называются равносильными, если множества их решений совпадают. Основу решения системы составляют равносильные преобразования входящих в нее уравнений и неравенств. Поскольку система включает, как правило, не одну неизвестную величину, а две, три и, возможно, больше, то для исключения неизвестных и приведения системы к уравнениям и неравенствам с одной неизвестной используют такой прием как подстановка. Если из одного уравнения можно выразить одну неизвестную через другую, а затем подставить ее в другое уравнение, то это хороший способ решения, нужно только помнить об ограничениях. Однако это нелегко сделать сразу, требуются дополнительные преобразования.

Можно складывать и вычитать уравнения системы с целью исключения одной из неизвестных. Решение системы записывается следующим образом: если в системе две неизвестных х и у, то (х; у), если три неизвестных х, у, z, то (х; у; z) и т. п. В системах, так же как и в уравнениях, используются разложение на множители, замена переменных.

Умение решать системы важно при решении текстовых задач и часто является наиболее трудоемкой частью решения.

Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств

Этот материал взят со страницы решения задач по математике:

Возможно вам будут полезны эти страницы:

Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств Примеры систем уравнений и неравенств

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Видео:Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Алгебра. Урок 8. Неравенства, системы неравенств.

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Примеры систем уравнений и неравенств

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Неравенства
  • Линейные неравенства

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Неравенства

Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

≥ больше или равно,

≤ меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Примеры систем уравнений и неравенств

НеравенствоГрафическое решениеФорма записи ответа
x cx ∈ ( − ∞ ; c )
x ≤ cx ∈ ( − ∞ ; c ]
x > cx ∈ ( c ; + ∞ )
x ≥ c

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство 3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 6 x ≤ − 1 + 1

Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

Ответ:

  1. x – любое число
  2. x ∈ ( − ∞ ; + ∞ )
  3. x ∈ ℝ

№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

x + 6 − 9 x > − 8 x + 48

− 8 x + 8 x > 48 − 6

Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

Квадратные неравенства

Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

Алгоритм решения квадратного неравенства методом интервалов

  1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
  1. Отметить на числовой прямой корни трехчлена.

Если знак неравенства строгий > , , точки будут выколотые.

Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

  1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

  1. Выбрать подходящие интервалы (или интервал).

Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

Примеры решения квадратных неравенств:

№1. Решить неравенство x 2 ≥ x + 12.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 1, c = − 12

D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

Это значит, что знак на интервале, в котором лежит точка 6 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

Точки -3 и 4 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

№2. Решить неравенство − 3 x − 2 ≥ x 2 .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = − 2

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

x 1 = − 2, x 2 = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

Это значит, что знак на интервале, в котором лежит точка 0 будет − .

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

Точки -2 и -1 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ [ − 2 ; − 1 ]

№3. Решить неравенство 4 x 2 + 3 x .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = 4

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

Точки -4 и 1 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

№4. Решить неравенство x 2 − 5 x 6.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 5, c = − 6

D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

Это значит, что знак на интервале, в котором лежит точка 10 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

Точки -1 и 6 будут в круглых скобках, так как они выколотые

Ответ: x ∈ ( − 1 ; 6 )

№5. Решить неравенство x 2 4.

Решение:

Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

Это значит, что знак на интервале, в котором лежит точка 3 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

Точки -2 и 2 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 2 ; 2 )

№6. Решить неравенство x 2 + x ≥ 0.

Решение:

Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

x 2 + x = 1 2 + 1 = 2 > 0

Это значит, что знак на интервале, в котором лежит точка 1 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

Дробно рациональные неравенства

Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

Примеры дробно рациональных неравенств:

x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

Алгоритм решения дробно рациональных неравенств:

  1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

  1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
  1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

  1. Нанести нули числителя и нули знаменателя на ось x .

Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые .

Если знак неравенства строгий ,
при нанесении на ось x нули числителя выколотые .

Если знак неравенства нестрогий ,
при нанесении на ось x нули числителя жирные .

  1. Расставить знаки на интервалах.
  1. Выбрать подходящие интервалы и записать ответ.

Примеры решения дробно рациональных неравенств:

№1. Решить неравенство x − 1 x + 3 > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравниваем числитель к нулю f ( x ) = 0.

x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

  1. Приравниваем знаменатель к нулю g ( x ) = 0.

x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

Это значит, что знак на интервале, в котором лежит точка 2 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

№2. Решить неравенство 3 ( x + 8 ) ≤ 5.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

3 ( x + 8 ) − 5 x + 8 ≤ 0

3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 x − 40 x + 8 ≤ 0

− 5 x − 37 x + 8 ≤ 0

  1. Приравнять числитель к нулю f ( x ) = 0.

x = − 37 5 = − 37 5 = − 7,4

x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

Это значит, что знак на интервале, в котором лежит точка 0 будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

№3. Решить неравенство x 2 − 1 x > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравнять числитель к нулю f ( x ) = 0.

( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

Системы неравенств

Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

Пример системы неравенств:

Алгоритм решения системы неравенств

  1. Решить первое неравенство системы, изобразить его графически на оси x .
  1. Решить второе неравенство системы, изобразить его графически на оси x .
  1. Нанести решения первого и второго неравенств на ось x .
  1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Примеры решений систем неравенств:

№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 4 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

Графическая интерпретация решения:

Точка 2 на графике жирная, так как знак неравенства нестрогий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 3 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

Точка -1 на графике выколотая, так как знак неравенства строгий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

Ответ: x ∈ ( − ∞ ; − 1 )

№3. Решить систему неравенств 5 − x

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения:

  1. Решаем второе неравенство системы

2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

№4. Решить систему неравенств 0 2 x + 3 ≤ x 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения первого неравенства:

  1. Решаем второе неравенство системы

Решаем методом интервалов.

a = − 1, b = 2, c = 3

D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

D > 0 — два различных действительных корня.

x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

Графическая интерпретация решения второго неравенства:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

Видео:Решение системы неравенствСкачать

Решение системы неравенств

Показательные уравнения и неравенства с примерами решения

Содержание:

Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:

Примеры систем уравнений и неравенств

Уравнения такого вида принято называть показательными.

Видео:ПРОСТЕЙШИЙ метод решения систем квадратных неравенствСкачать

ПРОСТЕЙШИЙ метод решения систем квадратных неравенств

Решении показательных уравнений

При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.

Пусть Примеры систем уравнений и неравенствЕсли степени с основанием а равны, то их показатели равны, т. е. если Примеры систем уравнений и неравенств

Каждому значению показательной функции Примеры систем уравнений и неравенствсоответствует единственный показатель s.

Пример:

Примеры систем уравнений и неравенств

Решение:

Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению

Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Пример:

Примеры систем уравнений и неравенств

Решение:

а) Данное уравнение равносильно (поясните почему) уравнению

Примеры систем уравнений и неравенств

Если степени с основанием 3 равны, то равны и их показатели:

Примеры систем уравнений и неравенств

Решив это уравнение, получим

Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Ответ: Примеры систем уравнений и неравенств

При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.

Пример:

Примеры систем уравнений и неравенств

Решение:

а) Данное уравнение равносильно уравнению

Примеры систем уравнений и неравенств

Решая его, получаем:

Примеры систем уравнений и неравенств

Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. Примеры систем уравнений и неравенствоткуда находим Примеры систем уравнений и неравенств

б) Разделив обе части уравнения на Примеры систем уравнений и неравенствполучим уравнение Примеры систем уравнений и неравенствравносильное данному. Решив его, получим Примеры систем уравнений и неравенствПримеры систем уравнений и неравенств

Ответ: Примеры систем уравнений и неравенств

При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.

Пример:

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Обозначим Примеры систем уравнений и неравенствтогда Примеры систем уравнений и неравенств

Таким образом, из данного уравнения получаем

Примеры систем уравнений и неравенств

откуда находим: Примеры систем уравнений и неравенств

Итак, с учетом обозначения имеем:

Примеры систем уравнений и неравенств

При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.

Пример:

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).

Пример:

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Примеры систем уравнений и неравенств

Пример:

При каком значении а корнем уравнения Примеры систем уравнений и неравенствявляется число, равное 2?

Решение:

Поскольку х = 2 — корень, то верно равенство

Примеры систем уравнений и неравенств

Решив это уравнение, найдем

Примеры систем уравнений и неравенств

Ответ: при Примеры систем уравнений и неравенств

Показательные уравнения и их системы

Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества: Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Приведем методы решения некоторых типов показательных уравнений.

1 Приведение к одному основанию.

Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду Примеры систем уравнений и неравенств. Отсюда Примеры систем уравнений и неравенств

Пример №1

Решите уравнение Примеры систем уравнений и неравенств

Решение:

Заметим, что Примеры систем уравнений и неравенстви перепишем наше уравнение в виде

Примеры систем уравнений и неравенств

Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.

Пример №2

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Переходя к основанию степени 2, получим:

Примеры систем уравнений и неравенств

Согласно тождеству (2), имеем Примеры систем уравнений и неравенств

Последнее уравнение равносильно уравнению 4х-19 = 2,5х. Примеры систем уравнений и неравенств

2 Введение новой переменной.

Пример №3

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Применив тождество 2, перепишем уравнение как Примеры систем уравнений и неравенств

Введем новую переменную: Примеры систем уравнений и неравенствПолучим уравнение Примеры систем уравнений и неравенств

которое имеет корни Примеры систем уравнений и неравенствОднако кореньПримеры систем уравнений и неравенствне удовлетворяет условию Примеры систем уравнений и неравенствЗначит, Примеры систем уравнений и неравенств

Пример №4

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Разделив обе части уравнения на Примеры систем уравнений и неравенствполучим:

Примеры систем уравнений и неравенств

последнее уравнение запишется так: Примеры систем уравнений и неравенств

Решая уравнение, найдем Примеры систем уравнений и неравенств

Значение Примеры систем уравнений и неравенствне удовлетворяет условию Примеры систем уравнений и неравенствСледовательно,

Примеры систем уравнений и неравенств

Пример №5

Решить уравнение Примеры систем уравнений и неравенств

Решение:

Заметим что Примеры систем уравнений и неравенствЗначит Примеры систем уравнений и неравенств

Перепишем уравнение в виде Примеры систем уравнений и неравенств

Обозначим Примеры систем уравнений и неравенствПолучим Примеры систем уравнений и неравенств

Получим Примеры систем уравнений и неравенств

Корнями данного уравнения будут Примеры систем уравнений и неравенств

Следовательно, Примеры систем уравнений и неравенств

III Вынесение общего множителя за скобку.

Пример №6

Решить уравнение Примеры систем уравнений и неравенств

Решение:

После вынесения за скобку в левой части Примеры систем уравнений и неравенств, а в правой Примеры систем уравнений и неравенств, получим Примеры систем уравнений и неравенствРазделим обе части уравнения на Примеры систем уравнений и неравенствполучим Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Системы простейших показательных уравнений

Пример №7

Решите систему уравнений: Примеры систем уравнений и неравенств

Решение:

По свойству степеней система уравнений равносильна следующей

системе :Примеры систем уравнений и неравенствОтсюда получим систему Примеры систем уравнений и неравенств

Очевидно, что последняя система имеет решение Примеры систем уравнений и неравенств

Пример №8

Решите систему уравнений: Примеры систем уравнений и неравенств

Решение:

По свойству степеней система уравнений равносильна следующей системе: Примеры систем уравнений и неравенствПоследняя система, в свою очередь, равносильна системе: Примеры систем уравнений и неравенств

Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Примеры систем уравнений и неравенствПодставив полученное значение во второе уравнение, получим Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Пример №9

Решите систему уравнений: Примеры систем уравнений и неравенств

Решение:

Сделаем замену: Примеры систем уравнений и неравенствТогда наша система примет вид: Примеры систем уравнений и неравенств

Очевидно, что эта система уравнений имеет решение Примеры систем уравнений и неравенств

Тогда получим уравнения Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Приближенное решение уравнений

Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть Примеры систем уравнений и неравенств. Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое Примеры систем уравнений и неравенств(читается как «кси»), что Примеры систем уравнений и неравенств

Это утверждение проиллюстрировано на следующем чертеже.

Примеры систем уравнений и неравенств

Рассмотрим отрезок Примеры систем уравнений и неравенствсодержащий лишь один корень уравнения .

Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности Примеры систем уравнений и неравенств

  1. вычисляется значение f(х) выражения Примеры систем уравнений и неравенств
  2. отрезок делится пополам, то есть вычисляется значение Примеры систем уравнений и неравенств
  3. вычисляется значение Примеры систем уравнений и неравенстввыражения f(х) в точке Примеры систем уравнений и неравенств
  4. проверяется условие Примеры систем уравнений и неравенств
  5. если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что Примеры систем уравнений и неравенств(левый конец отрезка переходит в середину);
  6. если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
  7. для нового отрезка проверяется условие Примеры систем уравнений и неравенств
  8. если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.

Метод последовательного деления пополам проиллюстрирован на этом чертеже:

Примеры систем уравнений и неравенств

Для нахождения интервала, содержащего корень уравнения Примеры систем уравнений и неравенстввычисляются значения Примеры систем уравнений и неравенств

Оказывается, что для корня Примеры систем уравнений и неравенствданного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые Примеры систем уравнений и неравенстви Примеры систем уравнений и неравенствудовлетворяющие неравенству Примеры систем уравнений и неравенств

Пример №10

Найдите интервал, содержащий корень уравнения Примеры систем уравнений и неравенств

Решение:

Поделив обе части уравнения на 2 , получим, Примеры систем уравнений и неравенств

Так как, для нового уравнения Примеры систем уравнений и неравенств

Значит, в интервале, Примеры систем уравнений и неравенствуравнение имеет хотя бы один корень. В то же время уравнение при Примеры систем уравнений и неравенствне имеет ни одного корня, так как,

Примеры систем уравнений и неравенстввыполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Примеры систем уравнений и неравенствДля Примеры систем уравнений и неравенствпроверим выполнение условия

Примеры систем уравнений и неравенств

Примеры систем уравнений и неравенств

Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).

Нахождение приближенного корня с заданной точностью

Исходя из вышесказанного, заключаем, что если выполнено неравенство Примеры систем уравнений и неравенствкорень уравнения принадлежит интервалу

Примеры систем уравнений и неравенствПустьПримеры систем уравнений и неравенствЕсли Примеры систем уравнений и неравенствприближенный

корень уравнения с точностью Примеры систем уравнений и неравенств. Если Примеры систем уравнений и неравенствто корень лежит в интервале Примеры систем уравнений и неравенствесли Примеры систем уравнений и неравенствто корень лежит в интервале Примеры систем уравнений и неравенств. Продолжим процесс до нахождения приближенного значения корня с заданной точностью.

Пример №11

Найдите приближенное значение корня уравнения Примеры систем уравнений и неравенствс заданной точностьюПримеры систем уравнений и неравенств

Решение:

Из предыдущего примера нам известно, что корень лежит в интервале

(-1; 0). Из того, что Примеры систем уравнений и неравенствзаключаем, что корень лежит в интервале (-0,5; 0).

Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если Примеры систем уравнений и неравенств

Пусть Примеры систем уравнений и неравенств

Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

💥 Видео

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Решение системы линейных неравенств с одной переменной. 6 класс.Скачать

Решение системы линейных неравенств с одной переменной. 6 класс.

Методические приёмы решения неравенств, систем и совокупностей неравенствСкачать

Методические приёмы решения неравенств, систем и совокупностей неравенств

ОГЭ-2023 // Система неравенств за минутуСкачать

ОГЭ-2023 // Система неравенств за минуту

Алгебра 9. Урок 9 - Системы неравенствСкачать

Алгебра 9. Урок 9 - Системы неравенств

Системы показательных уравнений и неравенств. Практика. Видеоуроки 13. Алгебра 10 классСкачать

Системы показательных уравнений и неравенств. Практика. Видеоуроки 13. Алгебра 10 класс

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Урок 5. Неравенства и системы неравенств. Алгебра ОГЭ. Вебинар | МатематикаСкачать

Урок 5. Неравенства и системы неравенств. Алгебра ОГЭ. Вебинар | Математика

Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика

A.1.3 Линейные уравнения, неравенства и системы неравенствСкачать

A.1.3 Линейные уравнения, неравенства и системы неравенств

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Система с тремя переменнымиСкачать

Система с тремя переменными
Поделиться или сохранить к себе: