Примеры решения рациональных уравнений с объяснением

Рациональные уравнения с примерами решения

Содержание:

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Примеры решения рациональных уравнений с объяснением

Уравнения Примеры решения рациональных уравнений с объяснением— не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Примеры решения рациональных уравнений с объяснением

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Примеры решения рациональных уравнений с объяснениемкогда Примеры решения рациональных уравнений с объяснением

Пример №202

Решите уравнение Примеры решения рациональных уравнений с объяснением

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Примеры решения рациональных уравнений с объяснениемгде Примеры решения рациональных уравнений с объяснениеми Примеры решения рациональных уравнений с объяснением— целые рациональные выражения. Имеем:

Примеры решения рациональных уравнений с объяснением

Окончательно получим уравнение: Примеры решения рациональных уравнений с объяснением

Чтобы дробь Примеры решения рациональных уравнений с объяснениемравнялась нулю, нужно, чтобы числитель Примеры решения рациональных уравнений с объяснениемравнялся нулю, а знаменатель Примеры решения рациональных уравнений с объяснениемне равнялся нулю.

Тогда Примеры решения рациональных уравнений с объяснениемоткуда Примеры решения рациональных уравнений с объяснениемПри Примеры решения рациональных уравнений с объяснениемзнаменатель Примеры решения рациональных уравнений с объяснениемСледовательно, Примеры решения рациональных уравнений с объяснением— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Примеры решения рациональных уравнений с объяснением

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Примеры решения рациональных уравнений с объяснением

2) приравнять числитель Примеры решения рациональных уравнений с объяснением к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Примеры решения рациональных уравнений с объяснением равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Примеры решения рациональных уравнений с объяснениемто Примеры решения рациональных уравнений с объяснениемгде Примеры решения рациональных уравнений с объяснением

Пример №203

Решите уравнение Примеры решения рациональных уравнений с объяснением

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Примеры решения рациональных уравнений с объяснениемИмеем: Примеры решения рациональных уравнений с объяснениемто есть ОДЗ переменной Примеры решения рациональных уравнений с объяснениемсодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Примеры решения рациональных уравнений с объяснениемполучив пропорцию: Примеры решения рациональных уравнений с объяснением

По основному свойству пропорции имеем:

Примеры решения рациональных уравнений с объяснением

Решим это уравнение:

Примеры решения рациональных уравнений с объяснениемоткуда Примеры решения рациональных уравнений с объяснением

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Примеры решения рациональных уравнений с объяснением

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Примеры решения рациональных уравнений с объяснением

3) записать целое уравнение Примеры решения рациональных уравнений с объяснением и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Примеры решения рациональных уравнений с объяснением

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Примеры решения рациональных уравнений с объяснением

Областью допустимых значений переменной будут те значения Примеры решения рациональных уравнений с объяснениемпри которых Примеры решения рациональных уравнений с объяснениемто есть все значения Примеры решения рациональных уравнений с объяснениемкроме чисел Примеры решения рациональных уравнений с объяснениемА простейшим общим знаменателем будет выражение Примеры решения рациональных уравнений с объяснением

Умножим обе части уравнения на это выражение:

Примеры решения рациональных уравнений с объяснением

Получим: Примеры решения рациональных уравнений с объяснениема после упрощения: Примеры решения рациональных уравнений с объяснениемто есть Примеры решения рациональных уравнений с объяснениемоткуда Примеры решения рациональных уравнений с объяснениемили Примеры решения рациональных уравнений с объяснением

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Примеры решения рациональных уравнений с объяснением

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень Примеры решения рациональных уравнений с объяснениема второе — два корня Примеры решения рациональных уравнений с объяснением(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Примеры решения рациональных уравнений с объяснением

где Примеры решения рациональных уравнений с объяснением— натуральное число, Примеры решения рациональных уравнений с объяснением

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Примеры решения рациональных уравнений с объяснениемкг. Как понимать смысл записи Примеры решения рациональных уравнений с объяснением

Рассмотрим степени числа 3 с показателями Примеры решения рациональных уравнений с объяснением— это соответственно Примеры решения рациональных уравнений с объяснением

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Примеры решения рациональных уравнений с объяснением

Число Примеры решения рациональных уравнений с объяснениемдолжно быть втрое меньше числа Примеры решения рациональных уравнений с объяснениемравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Примеры решения рациональных уравнений с объяснениемРавенство Примеры решения рациональных уравнений с объяснениемсправедливо для любого основания Примеры решения рациональных уравнений с объяснениемпри условии, что Примеры решения рациональных уравнений с объяснением

Нулевая степень отличного от нуля числа а равна единице, то есть Примеры решения рациональных уравнений с объяснением при Примеры решения рациональных уравнений с объяснением

Вернемся к строке со степенями числа 3, где слева от числа Примеры решения рациональных уравнений с объяснениемзаписано число Примеры решения рациональных уравнений с объяснениемЭто число втрое меньше, чем 1, то есть равно Примеры решения рациональных уравнений с объяснениемСледовательно, Примеры решения рациональных уравнений с объяснениемРассуждая аналогично получаем: Примеры решения рациональных уравнений с объяснениеми т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Примеры решения рациональных уравнений с объяснением натуральное число, то Примеры решения рациональных уравнений с объяснением

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = — — 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 — 7 2 ,

x 1 = 6 или x 2 = — 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.

Пример 4

Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: — 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать

Дробно рациональные уравнения. Алгебра, 9 класс

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 :

  • находим решение целого рационального уравнения p ( x ) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 .

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 :

  • решаем уравнение p ( x ) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.

Пример 7

Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , — 2

Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 .

Решение

Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 .

Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) .

Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p ( x ) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 )

Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 .

Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Видео:8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать

8 класс, 5 урок, Первые представления о решении рациональных уравнений

Рациональные уравнения

В алгебре все рациональные уравнения содержат рациональные выражения. Прежде чем дать определение, нужно выделить понятие рационального выражения.

Это не что иное, как запись, состоящая из переменного значения х и чисел, представленная с помощью арифметических действий: сложения, умножения, вычитания, деления, а также возведения в степень с натуральным показателем.

Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Что такое рациональные уравнения

Математики дают двоякое объяснение рациональному уравнению:

  1. Если обе части уравнения представляют собой рациональные выражения, такое уравнение является рациональным.
  2. Уравнение, в левой части которого рациональное выражение, а в правой стоит ноль, являются рациональным.

Примеры решения рациональных уравнений с объяснением

Например, алгебраическая запись следующего вида является рациональным уравнением:

2x − 12x 2 yz 3 = 0.

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Алгоритм решения рациональных уравнений

Примеры решения рациональных уравнений с объяснением

Чтобы решить уравнение из рассматриваемой темы, нужно сделать следующие шаги:

  1. Для начала потребуется все члены уравнения переместить в одну часть.
  2. Определить общий знаменатель.
  3. Следующим шагом определяются множители, на которые умножаются члены равенства и выполняется преобразование этой части уравнения к алгебраической дроби.
  4. Решается уравнение вида p(x) = 0.
  5. Для каждого найденного корня уравнения p(x) = 0 делается проверочное действие. Если выполняется условие q(x) ≠ 0, то это значение является корнем заданного уравнения. В противном случае значение признается посторонним корнем. Оно не включается в ответ.

Примеры решения рациональных уравнений с объяснением

Рациональные уравнения являются краеугольным камнем всего курса алгебры. Человеку, научившемуся работать с подобными выражениями, умеющему упрощать, раскладывать на множители, под силу решение любой задачи, ведь преобразование выражений — это одна из составляющих частей решения серьёзного уравнения или неравенства.

Видео:Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать

Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)

Основные алгебраические формулы

Для решения квадратных уравнений есть формулы и правила сокращённого умножения, которые начинают изучать уже в средних классах общеобразовательных школ:

  1. a 2 −b 2 =(a−b)(a+b) — разность квадратов.
  2. (a+b) 2 =a 2 +2ab+b 2 — квадрат суммы.
  3. (a−b) 2 =a 2 −2ab+b 2 — квадрат разности.
  4. a 3 +b 3 =(a+b)(a2−ab+b2) — сумма кубов.
  5. a 3 −b 3 =(a−b)(a 2 +ab+b 2 ) — разность кубов.

Видео:ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)Скачать

ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)

Преобразования, упрощающие решение рациональных уравнений

Преобразования равносильны, если получается новое уравнение, причем корни будут такими же, как в изначальном выражении.

Деление или умножение уравнения на любое, отличное от нуля число, является равносильным преобразованием. Перенос параметров уравнения через знак равенства в ту или иную часть — тоже тождественное преобразование.

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Примеры решений уравнений с дробями

Примеры решения рациональных уравнений с объяснением

Алгоритм решения следующий: все части приводятся к общему знаменателю. Но после того, как найдены корни при использовании неравносильных преобразований, они проверяются методом подстановки в уравнение.

Приведем дробь к такому виду:

Примеры решения рациональных уравнений с объяснением

С учетом всего этого получится выражение:

Примеры решения рациональных уравнений с объяснением

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

Методы решения

Наиболее часто используемые способы для решения уравнений со степенями:

  • метод замены переменной;
  • разложение на множители.

Примеры решения рациональных уравнений с объяснением

Биквадратные уравнения типа ax 4 + bx 2 + c = 0 решаются методом замены множителя: x 2 = y.

Системы линейных уравнений также решаются методом замены.

К примеру, требуется решить систему линейных уравнений:

Примеры решения рациональных уравнений с объяснением

Принцип решения сводится к тому, что надо избавиться от лишней переменной:

Примеры решения рациональных уравнений с объяснением

Далее уравнение решается просто.

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

Пример решения с разложением на множители

Примеры решения рациональных уравнений с объяснением

Любые сложные вычисления нужно выполнять по действиям. Так проще избавиться от ненужных ошибок.

Алгоритм решения такой: вначале выполняется действие, заключённое в скобках, затем выполняется то, что записано во второй скобке и так далее. В конце все части объединяются, и находится результат.

Для самостоятельной работы при решении рациональных уравнений можно использовать онлайн-калькулятор. Он помогает лучше усвоить некоторые методы решения и быстрее справиться с заданиями.

🔥 Видео

АЛГЕБРА 8 класс: Решение рациональных уравнений | ВидеоурокСкачать

АЛГЕБРА 8 класс: Решение рациональных уравнений | Видеоурок

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)Скачать

Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)

Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)Скачать

Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 класс

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика
Поделиться или сохранить к себе: