9x – 18y = 5
x + y= xy
Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.
Урок 2.
1) Организационный момент
2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6.
3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.
Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) =>
4) Домашнее задание. Примеры. Решить уравнение в целых числах: а)
2x = 4
2x = 5
2x = 5
x = 2
x = 5/2
x = 5/2
y = 0
не подходит
не подходит 2x = -4
не подходит
не подходит
x = -2
y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах.
а) 8x + 12y = 32
x = 1 + 3n, y = 2 — 2n, n Z
б) 7x + 5y = 29
x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75
x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1
x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36
x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29
x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119
x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60
x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения:
а) 8x + 65y = 81
x = 2, y = 1
б) 17x + 23y = 183
x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям
а) x + y = xy
(0;0), (2;2)
б)
(1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители:
a)
б)
в)
г)
в)
(11;12), (-11;-12), (-11;12), (11;-12)
г)
(24;23), (24;-23), (-24;-23), (-24;23)
д)
(48;0), (24;1), (24;-1)
е)
x = 3m; y = 2m, mZ
ж) y = 2x – 1
x = m: y = 2m – 1, m Z
з)
x = 2m; y = m; x = 2m; y = -m, m Z
и)
решений нет 4) Решить уравнения в целых числах
(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
(x — 3)(xy + 5) = 5
(-2;3), (2;-5), (4;0)
(y + 1)(xy – 1)=3
(0;-4), (1;-2), (1;2)
(-4;-1), (-2;1), (2;-1), (4;1)
(-11;-12), (-11;12), (11;-12), (11;12)
(-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах.
а)
(-1;0)
б)
(5;0)
в)
(2;-1)
г)
(2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г.
Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
Алгебра 7, Макарычев Ю.Н., “Просвещение”. Как решать систему уравнений О чем эта статья: 8 класс, 9 класс, ЕГЭ/ОГЭ
Основные понятия Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно. Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство. Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7. Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой. Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям. Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.
Линейное уравнение с двумя переменными Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа. Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство. Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия. Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0: Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0. Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0. Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂). Провести прямую через эти две точки и вуаля — график готов. Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Система двух линейных уравнений с двумя переменными Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество. Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так: Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия. Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия. Можно записать систему иначе: Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂. Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂. Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.
Метод подстановки Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y: Выразить одну переменную через другую из более простого уравнения системы. Подставить то, что получилось на место этой переменной в другое уравнение системы. Решить полученное уравнение, найти одну из переменных. Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение. Записать ответ. Ответ принято записывать в виде пар значений (x; y). Потренируемся решать системы линейных уравнений методом подстановки.
Пример 1 Решите систему уравнений: x − y = 4
x + 2y = 10 Выразим x из первого уравнения: x − y = 4
x = 4 + y Подставим получившееся выражение во второе уравнение вместо x: x + 2y = 10
4 + y + 2y = 10 Решим второе уравнение относительно переменной y: 4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2 Полученное значение подставим в первое уравнение вместо y и решим уравнение: x − y = 4
x − 2 = 4
x = 4 + 2
x = 6 Ответ: (6; 2).
Пример 2 Решите систему линейных уравнений: x + 5y = 7
3x = 4 + 2y Сначала выразим переменную x из первого уравнения: x + 5y = 7
x = 7 − 5y Выражение 7 − 5y подставим вместо переменной x во второе уравнение: 3x = 4 + 2y
3 (7 − 5y) = 4 + 2y Решим второе линейное уравнение в системе: 3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1 Подставим значение y в первое уравнение и найдем значение x: x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2 Ответ: (2; 1).
Пример 3 Решите систему линейных уравнений: x − 2y = 3
5x + y = 4 Из первого уравнения выразим x: x − 2y = 3
x = 3 + 2y Подставим 3 + 2y во второе уравнение системы и решим его: 5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1 Подставим получившееся значение в первое уравнение и решим его: x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1 Ответ: (1; −1).
Метод сложения Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y: При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами. Складываем почленно левые и правые части уравнений системы. Решаем получившееся уравнение с одной переменной. Находим соответствующие значения второй переменной. Запишем ответ в в виде пар значений (x; y).
Система линейных уравнений с тремя переменными Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так: Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z). Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Решение задач Разберем примеры решения систем уравнений.
Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0? 5x − 8y = 4x − 9y + 3 5x − 8y = 4x − 9y + 3 5x − 8y − 4x + 9y = 3
Задание 2. Как решать систему уравнений способом подстановки Выразить у из первого уравнения: Подставить полученное выражение во второе уравнение: Найти соответствующие значения у:
Задание 3. Как решать систему уравнений методом сложения
Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
Решаем полученное квадратное уравнение любым способом. Находим его корни:
Найти у, подставив найденное значение в любое уравнение:
Ответ: (1; 1), (1; -1).
Задание 4. Решить систему уравнений Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.
Задание 5. Как решить систему уравнений с двумя неизвестными При у = -2 первое уравнение не имеет решений, при у = 2 получается:
9x – 18y = 5
x + y= xy
Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.
Урок 2.
1) Организационный момент
2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6.
3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.
Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) =>
4) Домашнее задание. Примеры. Решить уравнение в целых числах: а)
2x = 4
2x = 5
2x = 5
x = 2
x = 5/2
x = 5/2
y = 0
не подходит
не подходит 2x = -4
не подходит
не подходит
x = -2
y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах.
а) 8x + 12y = 32
x = 1 + 3n, y = 2 — 2n, n Z
б) 7x + 5y = 29
x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75
x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1
x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36
x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29
x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119
x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60
x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения:
а) 8x + 65y = 81
x = 2, y = 1
б) 17x + 23y = 183
x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям
а) x + y = xy
(0;0), (2;2)
б)
(1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители:
a)
б)
в)
г)
в)
(11;12), (-11;-12), (-11;12), (11;-12)
г)
(24;23), (24;-23), (-24;-23), (-24;23)
д)
(48;0), (24;1), (24;-1)
е)
x = 3m; y = 2m, mZ
ж) y = 2x – 1
x = m: y = 2m – 1, m Z
з)
x = 2m; y = m; x = 2m; y = -m, m Z
и)
решений нет 4) Решить уравнения в целых числах
(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
(x — 3)(xy + 5) = 5
(-2;3), (2;-5), (4;0)
(y + 1)(xy – 1)=3
(0;-4), (1;-2), (1;2)
(-4;-1), (-2;1), (2;-1), (4;1)
(-11;-12), (-11;12), (11;-12), (11;12)
(-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах.
а)
(-1;0)
б)
(5;0)
в)
(2;-1)
г)
(2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г.
Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
Алгебра 7, Макарычев Ю.Н., “Просвещение”. Как решать систему уравнений О чем эта статья: 8 класс, 9 класс, ЕГЭ/ОГЭ
Основные понятия Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно. Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство. Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7. Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой. Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям. Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.
Линейное уравнение с двумя переменными Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа. Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство. Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия. Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0: Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0. Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0. Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂). Провести прямую через эти две точки и вуаля — график готов. Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Система двух линейных уравнений с двумя переменными Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество. Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так: Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия. Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия. Можно записать систему иначе: Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂. Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂. Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.
Метод подстановки Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y: Выразить одну переменную через другую из более простого уравнения системы. Подставить то, что получилось на место этой переменной в другое уравнение системы. Решить полученное уравнение, найти одну из переменных. Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение. Записать ответ. Ответ принято записывать в виде пар значений (x; y). Потренируемся решать системы линейных уравнений методом подстановки.
Пример 1 Решите систему уравнений: x − y = 4
x + 2y = 10 Выразим x из первого уравнения: x − y = 4
x = 4 + y Подставим получившееся выражение во второе уравнение вместо x: x + 2y = 10
4 + y + 2y = 10 Решим второе уравнение относительно переменной y: 4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2 Полученное значение подставим в первое уравнение вместо y и решим уравнение: x − y = 4
x − 2 = 4
x = 4 + 2
x = 6 Ответ: (6; 2).
Пример 2 Решите систему линейных уравнений: x + 5y = 7
3x = 4 + 2y Сначала выразим переменную x из первого уравнения: x + 5y = 7
x = 7 − 5y Выражение 7 − 5y подставим вместо переменной x во второе уравнение: 3x = 4 + 2y
3 (7 − 5y) = 4 + 2y Решим второе линейное уравнение в системе: 3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1 Подставим значение y в первое уравнение и найдем значение x: x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2 Ответ: (2; 1).
Пример 3 Решите систему линейных уравнений: x − 2y = 3
5x + y = 4 Из первого уравнения выразим x: x − 2y = 3
x = 3 + 2y Подставим 3 + 2y во второе уравнение системы и решим его: 5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1 Подставим получившееся значение в первое уравнение и решим его: x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1 Ответ: (1; −1).
Метод сложения Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y: При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами. Складываем почленно левые и правые части уравнений системы. Решаем получившееся уравнение с одной переменной. Находим соответствующие значения второй переменной. Запишем ответ в в виде пар значений (x; y).
Система линейных уравнений с тремя переменными Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так: Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z). Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Решение задач Разберем примеры решения систем уравнений.
Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0? 5x − 8y = 4x − 9y + 3 5x − 8y = 4x − 9y + 3 5x − 8y − 4x + 9y = 3
Задание 2. Как решать систему уравнений способом подстановки Выразить у из первого уравнения: Подставить полученное выражение во второе уравнение: Найти соответствующие значения у:
Задание 3. Как решать систему уравнений методом сложения
Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
Решаем полученное квадратное уравнение любым способом. Находим его корни:
Найти у, подставив найденное значение в любое уравнение:
Ответ: (1; 1), (1; -1).
Задание 4. Решить систему уравнений Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.
Задание 5. Как решить систему уравнений с двумя неизвестными При у = -2 первое уравнение не имеет решений, при у = 2 получается:
Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.
Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7
Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.
Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$
Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y=6 решениями являются пары
x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.
Уравнение имеет бесконечное множество решений.
Свойства уравнения с двумя переменными
Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.
Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:
если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.
Пример 1. Из данного линейного уравнения выразите y через x и x через y:
Алгоритм: рассмотрим 3x+4y=10
1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10
2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).
Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Уравнения с двумя переменными (неопределенные уравнения)
Разделы: Математика
Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.
Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.
В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.
Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.
Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.
Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.
Цель урока:
повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
воспитание познавательного интереса к учебному предмету
формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию
Урок 1.
Ход урока.
1) Орг. момент.
2) Актуализация опорных знаний.
Определение. Линейным уравнением с двумя переменными называется уравнение вида
mx + ny = k, где m, n, k – числа, x, y – переменные.
Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.
1. 5x+2y=12 (2)y = -2.5x+6
Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.
Пусть x = 2, y = -2.5•2+6 = 1
x = 4, y = -2.5•4+6 =- 4
Пары чисел (2;1); (4;-4) – решения уравнения (1).
Данное уравнение имеет бесконечно много решений.
3) Историческая справка
Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.
В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.
Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.
4) Изучение нового материала.
Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0
Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.
Пример: 34x – 17y = 3.
НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.
Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.
Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.
Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:
где (; ) – какое-либо решение уравнения (1), t Z
Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)
m, n, x, y Z
Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид
5) Домашнее задание. Решить уравнение в целых числах:
9x – 18y = 5
x + y= xy
Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.
Урок 2.
1) Организационный момент
2) Проверка домашнего задания
5 не делится нацело на 9, в целых числах решений нет.
Методом подбора можно найти решение
3) Составим уравнение:
Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174
Многие учащиеся, составив уравнение, не смогут его решить.
Ответ: мальчиков 4, девочек 6.
3) Изучение нового материала
Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.
Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.
Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.
Ответ: где m Z.
Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.
Пример: Решить уравнения в целых числах.
Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.
y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.
y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.
y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.
Следовательно, y = 4n, тогда
4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n
Ответ: , где n Z.
II. Неопределенные уравнения 2-ой степени
Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.
И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.
Пример: Решить уравнение в целых числах.
13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)
Рассмотрим эти случаи
а) =>
б) =>
в) =>
г) =>
4) Домашнее задание.
Примеры. Решить уравнение в целых числах:
а)
2x = 4
2x = 5
2x = 5
x = 2
x = 5/2
x = 5/2
y = 0
не подходит
не подходит
2x = -4
не подходит
не подходит
x = -2
y = 0
б)
в)
Итоги. Что значит решить уравнение в целых числах?
Какие методы решения неопределенных уравнений вы знаете?
Упражнения для тренировки.
1) Решите в целых числах.
а) 8x + 12y = 32
x = 1 + 3n, y = 2 — 2n, n Z
б) 7x + 5y = 29
x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75
x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1
x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36
x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29
x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119
x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60
x = 45 + 10t, y = 30 + 7t, t Z
2) Найти целые неотрицательные решения уравнения:
а) 8x + 65y = 81
x = 2, y = 1
б) 17x + 23y = 183
x = 4, y = 5
3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям
а) x + y = xy
(0;0), (2;2)
б)
(1;2), (5;2), (-1;-1), (-5;-2)
Число 3 можно разложить на множители:
a)
б)
в)
г)
в)
(11;12), (-11;-12), (-11;12), (11;-12)
г)
(24;23), (24;-23), (-24;-23), (-24;23)
д)
(48;0), (24;1), (24;-1)
е)
x = 3m; y = 2m, mZ
ж) y = 2x – 1
x = m: y = 2m – 1, m Z
з)
x = 2m; y = m; x = 2m; y = -m, m Z
и)
решений нет
4) Решить уравнения в целых числах
(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
(x — 3)(xy + 5) = 5
(-2;3), (2;-5), (4;0)
(y + 1)(xy – 1)=3
(0;-4), (1;-2), (1;2)
(-4;-1), (-2;1), (2;-1), (4;1)
(-11;-12), (-11;12), (11;-12), (11;12)
(-24;23), (-24;23), (24;-23), (24;23)
5) Решить уравнения в целых числах.
а)
(-1;0)
б)
(5;0)
в)
(2;-1)
г)
(2; -1)
Детская энциклопедия “Педагогика”, Москва, 1972 г.
Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
Алгебра 7, Макарычев Ю.Н., “Просвещение”.
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Как решать систему уравнений
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Основные понятия
Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.
Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.
Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.
Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.
Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
Линейное уравнение с двумя переменными
Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.
Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.
Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:
Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.
Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.
Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).
Провести прямую через эти две точки и вуаля — график готов.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать
Система двух линейных уравнений с двумя переменными
Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.
Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:
Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.
Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.
Можно записать систему иначе:
Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.
Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.
Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.
Видео:9 класс, 8 урок, Уравнения с двумя переменнымиСкачать
Метод подстановки
Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:
Выразить одну переменную через другую из более простого уравнения системы.
Подставить то, что получилось на место этой переменной в другое уравнение системы.
Решить полученное уравнение, найти одну из переменных.
Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.
Записать ответ. Ответ принято записывать в виде пар значений (x; y).
Потренируемся решать системы линейных уравнений методом подстановки.
Пример 1
Решите систему уравнений:
x − y = 4 x + 2y = 10
Выразим x из первого уравнения:
x − y = 4 x = 4 + y
Подставим получившееся выражение во второе уравнение вместо x:
x + 2y = 10 4 + y + 2y = 10
Решим второе уравнение относительно переменной y:
4 + y + 2y = 10 4 + 3y = 10 3y = 10 − 4 3y = 6 y = 6 : 3 y = 2
Полученное значение подставим в первое уравнение вместо y и решим уравнение:
x − y = 4 x − 2 = 4 x = 4 + 2 x = 6
Ответ: (6; 2).
Пример 2
Решите систему линейных уравнений:
x + 5y = 7 3x = 4 + 2y
Сначала выразим переменную x из первого уравнения:
x + 5y = 7 x = 7 − 5y
Выражение 7 − 5y подставим вместо переменной x во второе уравнение:
Подставим значение y в первое уравнение и найдем значение x:
x + 5y = 7 x + 5 = 7 x = 7 − 5 x = 2
Ответ: (2; 1).
Пример 3
Решите систему линейных уравнений:
x − 2y = 3 5x + y = 4
Из первого уравнения выразим x:
x − 2y = 3 x = 3 + 2y
Подставим 3 + 2y во второе уравнение системы и решим его:
5x + y = 4 5 (3 + 2y) + y = 4 15 + 10y + y = 4 15 + 11y = 4 11y = 4 − 15 11y = −11 y = −11 : 11 y = −1
Подставим получившееся значение в первое уравнение и решим его:
x − 2y = 3 x − 2 (−1) = 3 x + 2 = 3 x = 3 − 2 x = 1
Ответ: (1; −1).
Видео:СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Метод сложения
Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:
При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.
Складываем почленно левые и правые части уравнений системы.
Решаем получившееся уравнение с одной переменной.
Находим соответствующие значения второй переменной.
Запишем ответ в в виде пар значений (x; y).
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Система линейных уравнений с тремя переменными
Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:
Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).
Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Видео:Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
Решение задач
Разберем примеры решения систем уравнений.
Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?
5x − 8y = 4x − 9y + 3
5x − 8y = 4x − 9y + 3
5x − 8y − 4x + 9y = 3
Задание 2. Как решать систему уравнений способом подстановки
Выразить у из первого уравнения:
Подставить полученное выражение во второе уравнение:
Найти соответствующие значения у:
Задание 3. Как решать систему уравнений методом сложения
Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
Решаем полученное квадратное уравнение любым способом. Находим его корни:
Найти у, подставив найденное значение в любое уравнение:
Ответ: (1; 1), (1; -1).
Задание 4. Решить систему уравнений
Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.
Задание 5. Как решить систему уравнений с двумя неизвестными
При у = -2 первое уравнение не имеет решений, при у = 2 получается:
💥 Видео
Линейное уравнение с двумя переменными. 6 класс.Скачать
Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
Алгебра 9 класс (Урок№23 - Уравнение с двумя переменными и его график.)Скачать
Решение систем уравнений методом подстановкиСкачать
Решение систем уравнений. Методом подстановки. Выразить YСкачать