- В каком случае уравнение ax = b имеет единственный корень; имеет бесконечно много корней; не имеет корней? Приведите примеры.
- Решение
- Нашли ошибку?
- Что ты хочешь узнать?
- Ответ
- Проверено экспертом
- Понятие уравнения
- Корень уравнения
- ГДЗ учебник по алгебрее 7 класс Макарычев. § 3. Контрольные вопросы и задания. Номер №5
- Решение
- Иррациональные уравнения с кубическими радикалами
- 📸 Видео
В каком случае уравнение ax = b имеет единственный корень; имеет бесконечно много корней; не имеет корней? Приведите примеры.
Решение
Линейное уравнение ax = b при a ≠ 0 имеет один корень, при a = 0 и b ≠ 0, не имеет корней, при a = 0 и b = 0 имеет бесконечно много корней (любое число является его корнем).
Примеры:
15 x = 30 − один корень;
0 x = 4 − не имеет корней;
0 x = 0 − имеет бесконечно много корней.
Нашли ошибку?
Если Вы нашли ошибку, неточность или просто не согласны с ответом, пожалуйста сообщите нам об этом
1. Линейное уравнение. Приведите Примеры линейных уравнений, имеющих один корень, бесконечно много корней и не имеющих корней.
- Попроси больше объяснений
- Следить
- Отметить нарушение
Что ты хочешь узнать?
Видео:БЕСКОНЕЧНОЕ количество корнейСкачать
Ответ
Проверено экспертом
один корень имеют например
5х=6, или 10х=20, или 5х-4=1 или 9х-7=2 и т.д.
бесконечно много корней имеют например 0х=0; 2(5х+6)=10х+12, или 5х-3х-2х=7-4-3
не имеющие корни например 0х=4 или 2х+5=2х+6 и т.д.
После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Понятие уравнения
Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:
Уравнением называется равенство с неизвестным числом, которое нужно найти.
Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.
Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .
После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .
Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.
В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .
В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:
Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.
К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Корень уравнения
Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.
Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .
Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.
Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.
Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.
Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .
Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.
Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .
Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.
Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня – три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.
Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня – 2 , 1 и 5 , то пишем – 2 , 1 , 5 или .
Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых – Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .
Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.
Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.
Поясним определение на примерах.
Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.
Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .
На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
ГДЗ учебник по алгебрее 7 класс Макарычев. § 3. Контрольные вопросы и задания. Номер №5
В каком случае уравнение ax = b имеет единственный корень; имеет бесконечно много корней; не имеет корней? Приведите примеры.
Решение
Линейное уравнение ax = b при a ≠ 0 имеет один корень, при a = 0 и b ≠ 0, не имеет корней, при a = 0 и b = 0 имеет бесконечно много корней (любое число является его корнем).
Примеры:
15 x = 30 − один корень;
0 x = 4 − не имеет корней;
0 x = 0 − имеет бесконечно много корней.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Иррациональные уравнения с кубическими радикалами
Разделы: Математика
Тема: «Иррациональные уравнения вида , .»
(Методическая разработка.)
Основные понятия
Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.
Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.
Основные свойства радикалов:
- Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
- Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.
Методы решения иррациональных уравнений
Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.
Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.
Основными методами решения иррациональных уравнений являются:
а) метод возведения обеих частей уравнения в одну и ту же степень;
б) метод введения новых переменных (метод замен);
в) искусственные приемы решения иррациональных уравнений.
В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.
1 метод. Возведение в куб.
Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.
Пример 1. Решить уравнение
Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,
,
,
Пример 2. Решить уравнение .
Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению
,
,
,
и рассмотрим полученное уравнение как квадратное относительно одного из корней
,
,
следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.
Проверка:
Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.
2 метод. Возведение в куб по формуле.
По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.
,
(незначительная модификация известной формулы), тогда
Пример3. Решить уравнение .
Возведём уравнение в куб с использованием формул, приведённых выше.
,
Но выражение должно быть равно правой части. Поэтому имеем:
, откуда
.
Теперь при возведении в куб получаем обычное квадратное уравнение:
, и два его корня
,
Оба значения, как показывает проверка, правильные.
Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.
Пример4. Решить уравнение .
Возводя, как и ранее, обе части в третью степень, имеем:
.
Откуда (учитывая, что выражение в скобках равно ), получаем:
, значит
. Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.
Ответ: .
Ответим на вопрос: «Почему возникли посторонние корни?»
Равенство влечёт равенство . Заменим с на –с, получим:
и .
Нетрудно проверить тождество
,
Итак, если , то либо , либо . Уравнение можно представить в виде , .
Заменяя с на –с, получаем: если , то либо , либо
Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.
3 метод. Метод системы.
Пример 5. Решить уравнение .
Введём замену, составим и решим систему уравнений.
Пусть , . Тогда:
откуда очевидно, что
Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.
Легко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.
Ответ: Корней нет.
Пример 6. Решить уравнение .
Введём замену, составим и решим систему уравнений.
Пусть , . Тогда
или
Возвращаясь к исходной переменной имеем:
х=0.
4 метод. Использование монотонности функций.
Прежде чем использовать данный метод обратимся к теории.
Нам понадобятся следующие свойства:
- Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
- Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
- Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
- Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
- Функция вида возрастает при к>0 и убывает при к 30.05.2009
📸 Видео
СЛОЖИТЕ ДВА КОРНЯСкачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Как решать уравнения #корень #уравнение #пример #алгебраСкачать
Вариант 39, № 2. Линейное уравнение, имеющее бесконечно много корнейСкачать
АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
Решение уравнений, 6 классСкачать
Как решают уравнения в России и СШАСкачать
Решение биквадратных уравнений. 8 класс.Скачать
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Алгебра 8 класс. Уравнения с корнямиСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Решаем примеры на вычисление с квадратными корнями.Скачать
13. Вычисление предела последовательности ( предел с корнями и степенями ), примеры 5 и 6.Скачать
Уравнения с корнем. Иррациональные уравнения #shortsСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать