Пример уравнение регрессии y a bx

Основы линейной регрессии

Видео:Что такое линейная регрессия? Душкин объяснитСкачать

Что такое линейная регрессия? Душкин объяснит

Что такое регрессия?

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение, если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x, причём изменения в y вызываются именно изменениями в x, мы можем определить линию регрессии (регрессия y на x), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» и «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Видео:Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y – зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x, т.е. это «предсказанное значение y»

  • a – свободный член (пересечение) линии оценки; это значение Y, когда x=0 (Рис.1).
  • b – угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b.

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия.

Пример уравнение регрессии y a bx

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Видео:Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.Скачать

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b – выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y – предсказанный y, Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Пример уравнение регрессии y a bx

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Видео:Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины Пример уравнение регрессии y a bxостаток равен разнице Пример уравнение регрессии y a bxи соответствующего предсказанного Пример уравнение регрессии y a bxКаждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Между Пример уравнение регрессии y a bxи Пример уравнение регрессии y a bxсуществует линейное соотношение: для любых пар Пример уравнение регрессии y a bxданные должны аппроксимировать прямую линию. Если нанести на двумерный график остатки, то мы должны наблюдать случайное рассеяние точек, а не какую-либо систематическую картину.
  • Остатки нормально распределены с нулевым средним значением;
  • Остатки имеют одну и ту же вариабельность (постоянную дисперсию) для всех предсказанных величин Пример уравнение регрессии y a bxЕсли нанести остатки против предсказанных величин Пример уравнение регрессии y a bxот Пример уравнение регрессии y a bxмы должны наблюдать случайное рассеяние точек. Если график рассеяния остатков увеличивается или уменьшается с увеличением Пример уравнение регрессии y a bxто это допущение не выполняется;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать Пример уравнение регрессии y a bxили Пример уравнение регрессии y a bxи рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Видео:Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Аномальные значения (выбросы) и точки влияния

«Влиятельное» наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть «влиятельным» наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Видео:Регрессия. ПримерСкачать

Регрессия. Пример

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между Пример уравнение регрессии y a bxи Пример уравнение регрессии y a bxнет линейного соотношения: изменение Пример уравнение регрессии y a bxне влияет на Пример уравнение регрессии y a bx

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент Пример уравнение регрессии y a bxравен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению Пример уравнение регрессии y a bx, которая подчиняется Пример уравнение регрессии y a bxраспределению с Пример уравнение регрессии y a bxстепенями свободы, где Пример уравнение регрессии y a bxстандартная ошибка коэффициента Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx,

Пример уравнение регрессии y a bx— оценка дисперсии остатков.

Обычно если достигнутый уровень значимости Пример уравнение регрессии y a bxнулевая гипотеза отклоняется.

Можно рассчитать 95% доверительный интервал для генерального углового коэффициента Пример уравнение регрессии y a bx:

Пример уравнение регрессии y a bx

где Пример уравнение регрессии y a bxпроцентная точка Пример уравнение регрессии y a bxраспределения со степенями свободы Пример уравнение регрессии y a bxчто дает вероятность двустороннего критерия Пример уравнение регрессии y a bx

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, Пример уравнение регрессии y a bxмы можем аппроксимировать Пример уравнение регрессии y a bxзначением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Видео:Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения Пример уравнение регрессии y a bxи Пример уравнение регрессии y a bxмы ожидаем, что Пример уравнение регрессии y a bxизменяется, по мере того как изменяется Пример уравнение регрессии y a bx, и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации Пример уравнение регрессии y a bxбудет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии Пример уравнение регрессии y a bx, которая объясняется регрессией называют коэффициентом детерминации, обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность Пример уравнение регрессии y a bxпредставляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки Пример уравнение регрессии y a bxмы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Видео:РегрессияСкачать

Регрессия

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования Пример уравнение регрессии y a bxзначения по значению Пример уравнение регрессии y a bxв пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину Пример уравнение регрессии y a bxдля наблюдаемых, которые имеют определенное значение Пример уравнение регрессии y a bxпутем подстановки этого значения Пример уравнение регрессии y a bxв уравнение линии регрессии.

Итак, если Пример уравнение регрессии y a bxпрогнозируем Пример уравнение регрессии y a bxкак Пример уравнение регрессии y a bxИспользуем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины Пример уравнение регрессии y a bxв популяции.

Повторение этой процедуры для различных величин Пример уравнение регрессии y a bxпозволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Подобным образом можно рассчитать более широкую область, внутри которой, как мы ожидаем, лежит наибольшее число (обычно 95%) наблюдений.

Видео:Практика Многофакторная регрессияСкачать

Практика Многофакторная регрессия

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

Пример уравнение регрессии y a bx

а регрессионное уравнение с использованием P для X1 выглядит как

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

Пример уравнение регрессии y a bx

а уравнение примет вид

Y = b 0 + b 1 P 2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Видео:Линейная регрессияСкачать

Линейная регрессия

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Пример уравнение регрессии y a bx

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Пример уравнение регрессии y a bx

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 ( Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 ( Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Пример уравнение регрессии y a bx

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на .40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на .65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Пример уравнение регрессии y a bx

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся «внутри диапазона.»

Пример уравнение регрессии y a bx

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Пример уравнение регрессии y a bx

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию ( -.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Пример уравнение регрессии y a bx

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p .

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Видео:Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Уравнение регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

В сервисе для нахождения параметров регрессии используется МНК. Система нормальных уравнений для линейной регрессии: Пример уравнение регрессии y a bx. Также можно получить ответ, используя матричный метод. см. также Статистические функции в Excel

Уравнение парной регрессии относится к уравнению регрессии первого порядка. Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии.

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте графическое изображение регрессионной зависимости. Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования.
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели — определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

Видео:Пример проверки гипотезы о незначимости регрессииСкачать

Пример проверки гипотезы о незначимости регрессии

Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

Индекс розничных цен на продукты питания (х)Индекс промышленного производства (у)
110070
210579
310885
411384
511885
611885
711096
811599
9119100
1011898
1112099
12124102
13129105
14132112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

Пример уравнение регрессии y a bx

Решаем систему нормальных уравнений относительно a и b:

Пример уравнение регрессии y a bx

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/пхухуx 2y 2Пример уравнение регрессии y a bxПример уравнение регрессии y a bx
110070700010000490074,263400,060906
210579829511025624179,925270,011712
310885918011664722583,322380,019737
411384949212769705688,984250,059336
5118851003013924722594,646110,113484
6118851003013924722594,646110,113484
7110961056012100921685,587130,108467
8115991138513225980191,249000,078293
911910011900141611000095,778490,042215
10118981156413924960494,646110,034223
11120991188014400980196,910860,021102
12124102126481537610404101,44040,005487
13129105135451664111025107,10220,020021
14132112147841742412544110,49930,013399
Итого:162912991522931905571222671299,0010,701866
Среднее значение:116,357192,7857110878,0713611,218733,357хх
Пример уравнение регрессии y a bx8,498811,1431ххххх
Пример уравнение регрессии y a bx72,23124,17ххххх

Среднее значение определим по формуле:

Пример уравнение регрессии y a bx

Cреднее квадратическое отклонение рассчитаем по формуле:

Пример уравнение регрессии y a bx

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Пример уравнение регрессии y a bx

Параметры уравнения можно определить также и по формулам:

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Таким образом, уравнение регрессии:

Пример уравнение регрессии y a bx

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Пример уравнение регрессии y a bx

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Пример уравнение регрессии y a bx

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения Пример уравнение регрессии y a bx.

Пример уравнение регрессии y a bx,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

Пример уравнение регрессии y a bx

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

Пример уравнение регрессии y a bx

где n – число единиц совокупности;

m – число параметров при переменных х.

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Пример уравнение регрессии y a bx

2. Степенная регрессия имеет вид:

Пример уравнение регрессии y a bx

Для определения параметров производят логарифмиро­вание степенной функции:

Пример уравнение регрессии y a bx

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Пример уравнение регрессии y a bx

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/пхуlg xlg ylg x*lg y(lg x) 2(lg y) 2
1100702,0000001,8450983,6901964,0000003,404387
2105792,0211891,8976273,8354644,0852063,600989
3108852,0334241,9294193,9233264,1348123,722657
4113842,0530781,9242793,9506964,2151313,702851
5118852,0718821,9294193,9975284,2926953,722657
6118852,0718821,9294193,9975284,2926953,722657
7110962,0413931,9822714,0465944,1672843,929399
8115992,0606981,9956354,1124014,2464763,982560
91191002,0755472,0000004,1510944,3078954,000000
10118982,0718821,9912264,1255854,2926953,964981
11120992,0791811,9956354,1492874,3229953,982560
121241022,0934222,0086004,2048474,3824144,034475
131291052,1105902,0211894,2659014,4545894,085206
141321122,1205742,0492184,3455184,4968344,199295
Итого1629129928,9047427,4990456,7959759,6917254,05467
Среднее значение116,357192,785712,0646241,9642174,0568554,2636943,861048
Пример уравнение регрессии y a bx8,498811,14310,0319450,053853ххх
Пример уравнение регрессии y a bx72,23124,170,0010210,0029ххх

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/пхуПример уравнение регрессии y a bxПример уравнение регрессии y a bxПример уравнение регрессии y a bxПример уравнение регрессии y a bx
11007074,1644817,342920,059493519,1886
21057979,620570,3851120,007855190,0458
31088582,951804,1951330,02409660,61728
41138488,5976821,138660,05473477,1887
51188594,3584087,579610,11009960,61728
61188594,3584087,579610,11009960,61728
71109685,19619116,72230,1125410,33166
81159990,8883465,799010,08193638,6174
911910095,5240820,033840,04475952,04598
101189894,3584013,261270,03715927,18882
111209996,694235,3165630,02329138,6174
12124102101,41910,3374670,00569584,90314
13129105107,42325,8720990,023078149,1889
14132112111,07720,851630,00824369,1889
Итого162912991296,632446,41520,7030741738,357
Среднее значение116,357192,78571хххх
Пример уравнение регрессии y a bx8,498811,1431хххх
Пример уравнение регрессии y a bx72,23124,17хххх

Решая систему нормальных уравнений, определяем параметры логарифмической функции.

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Получим линейное уравнение:

Пример уравнение регрессии y a bx

Выполнив его потенцирование, получим:

Пример уравнение регрессии y a bx

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата Пример уравнение регрессии y a bx. По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Пример уравнение регрессии y a bx

Связь достаточно тесная.

Пример уравнение регрессии y a bx

В среднем расчётные значения отклоняются от фактических на 5,02%.

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Пример уравнение регрессии y a bx

3. Уравнение равносторонней гиперболы

Пример уравнение регрессии y a bx

Для определения параметров этого уравнения используется система нормальных уравнений:

Пример уравнение регрессии y a bx

Произведем замену переменных

Пример уравнение регрессии y a bx

и получим следующую систему нормальных уравнений:

Пример уравнение регрессии y a bx

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуzyzПример уравнение регрессии y a bxПример уравнение регрессии y a bx
1100700,0100000000,7000000,00010004900
2105790,0095238100,7523810,00009076241
3108850,0092592590,7870370,00008577225
4113840,0088495580,7433630,00007837056
5118850,0084745760,7203390,00007187225
6118850,0084745760,7203390,00007187225
7110960,0090909090,8727270,00008269216
8115990,0086956520,8608700,00007569801
91191000,0084033610,8403360,000070610000
10118980,0084745760,8305080,00007189604
11120990,0083333330,8250000,00006949801
121241020,0080645160,8225810,000065010404
131291050,0077519380,8139530,000060111025
141321120,0075757580,8484850,000057412544
Итого:162912990,12097182311,137920,0010510122267
Среднее значение:116,357192,785710,0086408440,7955660,00007518733,357
Пример уравнение регрессии y a bx8,498811,14310,000640820ххх
Пример уравнение регрессии y a bx72,23124,170,000000411ххх

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуПример уравнение регрессии y a bxПример уравнение регрессии y a bxПример уравнение регрессии y a bxПример уравнение регрессии y a bx
11007072,32620,0332315,411206519,1886
21057979,494050,0062540,244083190,0458
31088583,476190,0179272,32201260,61728
41138489,643210,06718131,8458577,1887
51188595,287610,121031105,834960,61728
61188595,287610,121031105,834960,61728
71109686,010270,1040699,7946510,33166
81159991,959870,07111249,5634438,6174
911910096,359570,03640413,2527252,04598
101189895,287610,0276777,35705927,18882
111209997,413670,0160242,51645338,6174
12124102101,460,0052940,29156584,90314
13129105106,16510,0110961,357478149,1889
14132112108,81710,02841910,1311369,1889
Итого:162912991298,9880,666742435,75751738,357
Среднее значение:116,357192,78571хххх
Пример уравнение регрессии y a bx8,498811,1431хххх
Пример уравнение регрессии y a bx72,23124,17хххх

Значения параметров регрессии a и b составили:

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Связь достаточно тесная.

Пример уравнение регрессии y a bx

В среднем расчётные значения отклоняются от фактических на 4,76%.

Пример уравнение регрессии y a bx

Пример уравнение регрессии y a bx

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Пример уравнение регрессии y a bx

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

📸 Видео

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Множественная регрессияСкачать

Множественная регрессия

Лекция 8. Линейная регрессияСкачать

Лекция 8. Линейная регрессия

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Линейная регрессия. Что спросят на собеседовании? ч.1Скачать

Линейная регрессия. Что спросят на собеседовании? ч.1

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Уравнение парной линейной регрессии с помощью Анализа ДанныхСкачать

Уравнение парной линейной регрессии с помощью Анализа Данных
Поделиться или сохранить к себе: