Задача 1. Скорость размножения некоторых бактерий пропорциональна количеству бактерий, имеющихся в наличии в рассматриваемый момент времени t. Количество бактерий утроилось в течение 5 часов. Найти зависимость числа бактерий от времени.
Решение. Обозначим количество бактерий в момент времени t через x, тогда — скорость размножения бактерий.
По условию задачи — уравнение с разделяющимися переменными.
Потенцируем последнее выражение и получаем общее решение нашего дифференциального уравнения.
Найдем частное решение, соответствующее начальным условиям
При t=0, x=x0 -частное решение дифференциального уравнения.
Чтобы найти искомую зависимость, определим коэффициент пропорциональности k. По условию задачи известно, что через 5 часов .
Прологарифмируем последнее выражение
Окончательно получаем
Задача 2. При прохождении света через вещество происходит ослабление интенсивности светового потока, вследствие превращения световой энергии в другие виды энергии, т.е. происходит поглощение света веществом. Найти закон поглощения, если известно, что ослабление интенсивности пропорционально толщине слоя и интенсивности падающего излучения.
Решение. Исходя из условия задачи, можно сразу написать дифференциальное уравнение
,
где dI -ослабление интенсивности при прохождении слоя толщиной dx.
k -коэффициент пропорциональности.
Знак минус показывает, что интенсивность падает по мере прохождения слоя.
Проинтегрируем наше уравнение, предварительно разделив переменные
Исходя из того, что падающий на поверхность вещества свет имел интенсивность I=I0 , при x=0, найдем частное решение
Итак, мы получили закон поглощения света веществом ( закон Бугера), где
k -натуральный показатель поглощения.
Задача 3. Известно, что механические свойства биологических объектов изучаются с помощью вязкоупругих моделей (поршень — пружина). Одной из найболее распространенных является модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и поршня (см. рис.1).
Рис. 4. Модель Кельвина — Фойхта
Найти зависимость деформации от времени , если к модели приложена постоянная нагрузка.
Решение. Согласно условию задачи , и учитывая также, что при малых деформациях выполняется закон Гука, т.е. , а механическое напряжение, возникающее в вязкой среде пропорционально скорости деформации, т.е. , мы можем написать дифференциальное уравнение.
, или
Проинтегрируем полученное дифференциальное уравнение от начального момента времени и нулевой деформации до текущих значений t и , мы будем иметь сразу частное решение.
Потенцируя последнее выражение, получаем
Находим отсюда
Как видно из полученной формулы, в рамках модели Кельвина — Фойхта деформация при постоянной нагрузке возрастает с течением времени. Это соответствует реальным материалам. Такое свойство материала названо текучестью.
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Применение дифференциальных уравнений первого порядка для решения задач
Раздел 1. Математический анализ
Тема 1.4. Дифференциальные уравнения и их применения в медицине
1. Основные понятия и определения дифференциального уравнения.
2. Методы решения некоторых дифференциальных уравнений.
3. Применение дифференциальных уравнений первого порядка для решения задач.
Основные понятия и определения дифференциального уравнения
Опр. Равенство, связывающее независимую переменную х, неизвестную функцию у = f(x), а так же её производные y’,y”,….. y n , называется обыкновенным дифференциальным уравнением.
F(x,y.y’,y”………) = 0, где F – известная функция, заданная в некоторой фиксированной области; х – независимая переменная; у – зависимая переменная; y’,y”,….. y n – её производные.
Опр. Решением дифференциального уравнения называется функция у = f(x), которая будучи представлена в уравнении F(x,y.y’,y”………) = 0, обращает его в тождество. График этой функции называется интегральной кривой.
Пример 1.1. Дифференциальное уравнение
Представим в виде: ; возьмём интеграл от левой и правой части уравнения: Получим – общее решение дифференциального уравнения, которое включает произвольную постоянную с.
Методы решения некоторых дифференциальных уравнений
Выбор метода решения дифференциального уравнения зависит от его вида.
Дифференциальные уравнения первого порядка с разделяющимися переменными.
Уравнения вида называется уравнением с разделяющимися переменными, если функция разлагаются на множители, зависящие каждый только от одной переменной:
После резделения переменных, когда каждый член будет зависеть только от одной переменной, общий интеграл уравнения находится почленным интегрированием:
Решением этого уравнения будет:
Пример 2.1. Найти решение уравнения: .
Разделим уравнение на множители, зависящие только от одной переменной:
Проинтегрируем левую и правую части:
Общее решение:
Линейные дифференциальные уравнения первого порядка.
Опр. Уравнения вида: , где – непрерывные функции, называются линейными дифференциальными уравнениями первого порядка.
При уравнение – называется линейным однородным уравнением. Общее решение:
При уравнение – называется линейным неоднородным уравнением. Общее решение:
Применение дифференциальных уравнений первого порядка для решения задач
Этапы решения задач с помощью дифференциальных уравнений:
1. Оформить условия, в которых протекают изучаемые процессы;
2. Выбрать зависимые и независимые переменные;
3. Определить функциональные зависимости между ними
4. Решение уравнения;
5. Анализ полученных решений.
В уравнениях, описывающих медико-биологические процессы, в качестве независимой переменной чаще всего используется временная компонента.
Размножение бактерий
Если бактерии обитают в благоприятной среде, то скорость размножения бактерий пропорциональна размеру популяции. Такое предположение описывается дифференциальным уравнением: где х – количество бактерий; k – коэффициент пропорциональности. Тогда, разделяя переменные и интегрируя левую и правую части уравнения получим: где N0 – начальное количество бактерий; N — количество бактерий в момент времени t.
Вычислим определённые интегралы:
Получим экспоненциальную кривую, которая зависит от времени и k. Если то количество бактерий будет возрастать по экспоненциальному закону, при , а при — оставаться на постоянном уровне.
N |
N0 |
k 0 |
t |
Для определения значения k необходимо иметь дополнительные сведения об изменении численности бактерий за определённый промежуток времени.
Внутривенное введение глюкозы
При внутривенном введении с помощью капельницы скорость поступления глюкозы в кровь постоянна и равна с. В крови глюкоза разлагается и удаляется из кровеносной системы со скоростью, пропорциональной имеющемуся количеству глюкозы. Тогда дифференциальное уравнение, описывающее этот процесс, имеет вид: где х – количество глюкозы в крови в текущий момент времени; с – скорость поступления глюкозы в кровь; — положительная постоянная. Запишем это уравнение в виде:
Это неоднородное линейное дифференциальное уравнение первого порядка, и его общее решение находиться по формуле:
где k- постоянная интегрирования. Чтобы найти постоянную k, необходимо знать начальное значение глюкозы в крови х (0).
Тогда .
Частное решение уравнения имеет вид:
При увеличении времени уровень глюкозы в крови приближается к .
Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать
Применение дифференциальных уравнений к решению задач
Дифференциальные уравнения. Тезисы. Примеры применений.
Тип публикации: Тезисы
Язык: Русский
Enter the password to open this PDF file:
Григоренко М.Н., Уральский государственный экономический университет, г. Екатеринбург Дифференциальные уравнения и их применение Изучая разделы математики можно рассматривать решение задач с использованием математического аппарата, например таких как, методы расчета рисковых оптимального временного ситуаций, использования ряда [2]. Более выбор оптимального ресурсов, анализ подробно портфеля, и задачи прогнозирование рассмотрим применение дифференциальных уравнений. Дифференциальные уравнения — раздел математики, изучающий теорию и способы решения уравнений, содержащих искомую функцию и ее производные различных дифференциальные) или порядков одного нескольких аргумента аргументов (обыкновенные (дифференциальные уравнения в частных производных) [1]. В самом уравнении участвует не только неизвестная функция, но и различные ее производные. Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др. Дифференциальные уравнения применяются для математического описания природных явлений. Так, например, в биологии дифференциальные уравнения применяются для описания популяции; в физике многие законы можно описать с помощью дифференциальных уравнений. Широкое применение находят дифференциальные уравнения и в моделях экономической динамики. В данных моделях отражается не только зависимость переменных от времени, но и их взаимосвязь во времени. Рассмотрим одну из задач макроэкономической динамики [1]. Например, пусть y(f) — объем продукции некоторой отрасли, реализованной к моменту времени t. Будем полагать, что вся производимая отраслью продукция реализуется по некоторой фиксированной цене р, т.е. выполнено условие ненасыщаемости рынка. Тогда доход к моменту времени t составит Y (t ) py(t ) Обозначим через I(t) величину инвестиций, направляемых на расширение производства. В модели естественного роста полагают, что скорость выпуска продукции (акселерация) пропорциональная величине инвестиций, т.е. y’ (t ) lI (t ) , где 1/l – норма акселерации. (Здесь мы пренебрегаем временем между окончанием производства продукции и ее реализацией, то есть считаем, что инвестиционный лаг равен нулю). Полагая, что величина инвестиций I(t) составляет фиксированную часть дохода, получим I (t ) mY (t ) mpy(t ) , где коэффициент пропорциональности m (так называемая норма инвестиций) — постоянная величина ( 0 m 1 ). Подставляя последнее выражение для I(t) в y’ (t ) lI (t ) приходим к уравнению y’ ky , где k mpl . Полученное дифференциальное уравнение — с разделяющимися переменными. Решая его, приходим к функции y(t ) y0 e k ( t t0 ) , где y0 y(t 0 ) . Заметим, что уравнение y’ ky описывает также рост народонаселения, динамику роста цен при постоянной инфляции, процесс радиоактивного распада и др. Модель роста в условиях роста конкурентного рынка имеет вид y’ mlp( y) y . Научный руководитель Кныш А.А., старший преподаватель Список литературы: 1. Высшая математика для экономического бакалавриата: учебник и практикум / Н. Ш. Кремер, Б. А. Путко, И. М. Три-шин, М. Н. Фридман; под ред. Н. Ш. Кремера. – М.: Издательство Юрайт; ИД Юрайт, 2012. — 909 с. 2. Кныш А.А. Примеры реализации межпредметных связей на занятиях математики в экономическом вузе // Новая наука: от идеи к результату. — Стерлитамак: АМИ, 2017. — №2 (2) – С. 55 – 57.
📸 Видео
Решение физических задач с помощью дифференциальных уравненийСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Операторный метод решения дифференциальных уравнений | Решение задачСкачать
Частное решение дифференциального уравнения. 11 класс.Скачать
Пример 65. Решить задачу Коши (диффуры)Скачать
Дифференциальные уравнения: задача 3Скачать
Применение степенных рядов к решению дифференциальных уравнений.Скачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Решение дифференциальных уравнений ДИФФУРЫСкачать
Поле направлений дифференциального уравнения первого порядкаСкачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
Задача Коши для дифференциальных уравненийСкачать
Дифференциальные уравнения. 11 класс.Скачать
Частное решение ДУ, с помощью рядаСкачать
Задача на составление дифференциального уравненияСкачать