При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Содержание
  1. Решение систем линейных уравнений методом Гаусса
  2. Понятие метода Гаусса
  3. Преимущества метода:
  4. Элементарные преобразования системы линейных уравнений
  5. Алгоритм и примеры решения методом Гаусса системы линейных уравнений с квадратной матрицей системы
  6. Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение
  7. Решение методом Гаусса прикладных задач на примере задачи на сплавы
  8. Метод Гаусса и системы линейных уравнений, имеющие бесконечное множество решений
  9. Метод Гаусса и системы линейных уравнений, не имеющие решений
  10. Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение
  11. Метод Гаусса и системы, в которых число неизвестных меньше числа уравнений
  12. Метод Гаусса и системы, в которых число неизвестных больше числа уравнений
  13. Метода Гаусса: примеры решения СЛАУ
  14. Метод Гаусса — что это такое?
  15. Основные определения и обозначения
  16. Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)
  17. Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы
  18. Метод гаусса можно ли менять строки местами
  19. Метод Гаусса
  20. Прямой ход метода Гаусса
  21. Обратный ход метода Гаусса
  22. Пример решения системы уравнений методом Гаусс
  23. Основные понятия
  24. Ступенчатый вид матрицы
  25. Пример нахождения обратной матрицы методом Гаусса – Жордана
  26. Пример решения СЛУ методом Гаусса – Жордана
  27. Онлайн-калькуляторы

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Решение систем линейных уравнений методом Гаусса

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Понятие метода Гаусса

Чтобы сразу же понять суть метода Гаусса, остановите ненадолго взгляд на анимации ниже. Почему одни буквы постепенно исчезают, другие окрашиваются в зелёный цвет, то есть становятся известными, а числа сменяются другими числами? Подсказка: из последнего уравнения совершенно точно известно, чему равна переменная z .

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Догадались? В такой системе, называемой трапециевидной, последнее уравнение содержит только одну переменную и её значение можно однозначно найти. Затем значение этой переменной подставляют в предыдущее уравнение (обратный ход метода Гаусса, далее — просто обратный ход), из которого находят предыдущую переменную, и так далее.

Метод Гаусса, называемый также методом последовательного исключения неизвестных, состоит в следующем. При помощи элементарных преобразований систему линейных уравнений приводят к такому виду, чтобы её матрица из коэффициентов оказалась трапециевидной (то же самое, что треугольной или ступенчатой) или близкой к трапециевидной (прямой ход метода Гаусса, далее — просто прямой ход). Пример такой системы и её решения как раз и был приведён на анимации в начале урока.

В трапециевидной (треугольной) системе, как видим, третье уравнение уже не содержит переменных y и x , а второе уравнение — переменной x .

После того, как матрица системы приняла трапециевидную форму, уже не представляет труда разобраться в вопросе о совместности системы, определить число решений и найти сами решения.

У студентов наибольшие трудности вызывает именно прямой ход, то есть приведение исходной системы к трапециевидной. И это несмотря на то, что преобразования, которые необходимы для этого, называются элементарными. И называются неслучайно: в них требуется производить умножение (деление), сложение (вычитание) и перемену уравнений местами.

Преимущества метода:

  1. при решении систем линейных уравнений с числом уравнений и неизвестных более трёх метод Гаусса не такой громоздкий, как метод Крамера, поскольку при решении методом Гаусса необходимо меньше вычислений;
  2. методом Гаусса можно решать неопределённые системы линейных уравнений, то есть, имеющие общее решение (и мы разберём их на этом уроке), а, используя метод Крамера, можно лишь констатировать, что система неопределённа;
  3. можно решать системы линейных уравнений, в которых число неизвестных не равно числу уравнений (также разберём их на этом уроке);
  4. метод основан на элементарных (школьных) методах — методе подстановки неизвестных и методе сложения уравнений, которых мы коснулись в соответствующей статье.

Кроме того, метод Гаусса является основой одного из методов нахождения обратной матрицы.

Чтобы все прониклись простотой, с которой решаются трапециевидные (треугольные, ступенчатые) системы линейных уравнений, приведём решение такой системы с применением обратного хода. Быстрое решение этой системы было показано на картинке в начале урока.

Пример 1. Решить систему линейных уравнений, применяя обратный ход:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. В данной трапециевидной системе переменная z однозначно находится из третьего уравнения. Подставляем её значение во второе уравнение и получаем значение переменой y:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь нам известны значения уже двух переменных — z и y. Подставляем их в первое уравнение и получаем значение переменной x:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Из предыдущих шагов выписываем решение системы уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Чтобы получить такую трапециевидную систему линейных уравнений, которую мы решили очень просто, требуется применять прямой ход, связанный с элементарными преобразованиями системы линейных уравнений. Это также не очень сложно.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Элементарные преобразования системы линейных уравнений

Повторяя школьный метод алгебраического сложения уравнений системы, мы выяснили, что к одному из уравнений системы можно прибавлять другое уравнение системы, причём каждое из уравнений может быть умножено на некоторые числа. В результате получаем систему линейных уравнений, эквивалентную данной. В ней уже одно уравнение содержало только одну переменную, подставляя значение которой в другие уравнений, мы приходим к решению. Такое сложение — один из видов элементарного преобразования системы. При использовании метода Гаусса можем пользоваться несколькими видами преобразований.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

На анимации выше показано, как система уравнений постепенно превращается в трапециевидную. То есть такую, которую вы видели на самой первой анимации и сами убедились в том, что из неё просто найти значения всех неизвестных. О том, как выполнить такое превращение и, конечно, примеры, пойдёт речь далее.

При решении систем линейных уравнений с любым числом уравнений и неизвестных в системе уравнений и в расширенной матрице системы можно:

  1. переставлять местами строки (это и было упомянуто в самом начале этой статьи);
  2. если в результате других преобразований появились равные или пропорциональные строки, их можно удалить, кроме одной;
  3. удалять «нулевые» строки, где все коэффициенты равны нулю;
  4. любую строку умножать или делить на некоторое число;
  5. к любой строке прибавлять другую строку, умноженное на некоторое число.

В результате преобразований получаем систему линейных уравнений, эквивалентную данной.

Видео:Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Алгоритм и примеры решения методом Гаусса системы линейных уравнений с квадратной матрицей системы

Рассмотрим сначала решение систем линейных уравений, в которых число неизвестных равно числу уравнений. Матрица такой системы — квадратная, то есть в ней число строк равно числу столбцов.

Пример 2. Решить методом Гаусса систему линейных уравнений

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решая системы линейных уравнений школьными способами, мы почленно умножали одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами. При сложении уравнений происходит исключение этой переменной. Аналогично действует и метод Гаусса.

Для упрощения внешнего вида решения составим расширенную матрицу системы:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

В этой матрице слева до вертикальной черты расположены коэффициенты при неизвестных, а справа после вертикальной черты — свободные члены.

Для удобства деления коэффициентов при переменных (чтобы получить деление на единицу) переставим местами первую и вторую строки матрицы системы. Получим систему, эквивалентную данной, так как в системе линейных уравнений можно переставлять местами уравнения:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

С помощью нового первого уравнения исключим переменную x из второго и всех последующих уравнений. Для этого ко второй строке матрицы прибавим первую строку, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные(в нашем случае на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные), к третьей строке – первую строку, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные(в нашем случае на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные).

Это возможно, так как При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям первую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате получим матрицу эквивалентную данной системе новой системы уравнений, в которой все уравнения, начиная со второго не содержат переменнную x:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Для упрощения второй строки полученной системы умножим её на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи получим вновь матрицу системы уравнений, эквивалентной данной системе:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь, сохраняя первое уравнение полученной системы без изменений, с помощью второго уравнения исключаем переменную y из всех последующих уравнений. Для этого к третьей строке матрицы системы прибавим вторую строку, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные(в нашем случае на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные).

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям вторую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате вновь получим матрицу системы, эквивалентной данной системе линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Мы получили эквивалентную данной трапециевидную систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Если число уравнений и переменных больше, чем в нашем примере, то процесс последовательного исключения переменных продолжается до тех пор, пока матрица системы не станет трапециевидной, как в нашем демо-примере.

Решение найдём «с конца» — обратный ход. Для этого из последнего уравнения определим z:
При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.
Подставив это значение в предшествующее уравнение, найдём y:
При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Из первого уравнения найдём x: При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Ответ: решение данной системы уравнений — При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Проверить решение системы можно и на калькуляторе, решающем методом Крамера: в этом случае будет выдан тот же ответ, если система имеет однозначное решение. Если же система имеет бесконечное множество решений, то таков будет и ответ, и это уже предмет пятой части этого урока.

Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение

Пример 3. Решить систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Перед нами вновь пример совместной и определённой системы линейных уравнений, в которой число уравнений равно числу неизвестных. Отличие от нашего демо-примера из алгоритма — здесь уже четыре уравнения и четыре неизвестных.

Пример 4. Решить систему линейных уравнений методом Гаусса:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Составляем расширенную матрицу системы. С помощью первого уравнения исключаем из последующих уравнений переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Для этого ко второй строке прибавляем первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к третьей строке — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к четвёртой — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь нужно с помощью второго уравнения исключить переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз последующих уравнений. Проведём подготовительные работы. Чтобы было удобнее с отношением коэффициентов, нужно получить единицу в во втором столбце второй строки. Для этого из второй строки вычтем третью, а полученную в результате вторую строку умножим на -1.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Проведём теперь собственно исключение переменной При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз третьего и четвёртого уравнений. Для этого к третьей строке прибавим вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, а к четвёртой — вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь с помощью третьего уравнения исключим переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Получаем расширенную матрицу трапециевидной формы.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Получили систему уравнений, которой эквивалентна заданная система:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Следовательно, полученная и данная системы являются совместными и определёнными. Окончательное решение находим «с конца». Из четвёртого уравнения непосредственно можем выразить значение переменной «икс четвёртое»:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Это значение подставляем в третье уравнение системы и получаем

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

откуда находим «икс третье»:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Далее, подставляем значения При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныево второе уравнение системы:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Наконец, подстановка значений

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныев первое уравнение даёт

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

откуда находим «икс первое»:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Ответ: данная система уравнений имеет единственное решение При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Проверить решение системы можно и на калькуляторе, решающем методом Крамера: в этом случае будет выдан тот же ответ, если система имеет однозначное решение.

Видео:Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

Решение методом Гаусса прикладных задач на примере задачи на сплавы

Системы линейных уравнений применяются для моделирования реальных объектов физического мира. Решим одну из таких задач — на сплавы. Аналогичные задачи — задачи на смеси, стоимость или удельный вес отдельных товаров в группе товаров и тому подобные.

Пример 5. Три куска сплава имеют общую массу 150 кг. Первый сплав содержит 60% меди, второй — 30%, третий — 10%. При этом во втором и третьем сплавах вместе взятых меди на 28,4 кг меньше, чем в первом сплаве, а в третьем сплаве меди на 6,2 кг меньше, чем во втором. Найти массу каждого куска сплава.

Решение. Составляем систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Умножаем второе и третье уравнения на 10, получаем эквивалентную систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Составляем расширенную матрицу системы:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Внимание, прямой ход. Путём сложения (в нашем случае — вычитания) одной строки, умноженной на число (применяем два раза) с расширенной матрицей системы происходят следующие преобразования:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Прямой ход завершился. Получили расширенную матрицу трапециевидной формы.

Применяем обратный ход. Находим решение с конца. Видим, что При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Из второго уравнения находим

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

Из третьего уравнения —

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Проверить решение системы можно и на калькуляторе, решающем методом Крамера: в этом случае будет выдан то же ответ, если система имеет однозначное решение.

О простоте метода Гаусса говорит хотя бы тот факт, что немецкому математику Карлу Фридриху Гауссу на его изобретение потребовалось лишь 15 минут. Кроме метода его имени из творчества Гаусса известно изречение «Не следует смешивать то, что нам кажется невероятным и неестественным, с абсолютно невозможным» — своего рода краткая инструкция по совершению открытий.

Во многих прикладных задачах может и не быть третьего ограничения, то есть, третьего уравнения, тогда приходится решать методом Гаусса систему двух уравнений с тремя неизвестными, или же, наоборот — неизвестных меньше, чем уравнений. К решению таких систем уравнений мы сейчас и приступим.

С помощью метода Гаусса можно установить, совместна или несовместна любая система n линейных уравнений с n переменными.

Видео:6 способов в одном видеоСкачать

6 способов в одном видео

Метод Гаусса и системы линейных уравнений, имеющие бесконечное множество решений

Следующий пример — совместная, но неопределённая система линейных уравнений, то есть имеющая бесконечное множество решений.

После выполнения преобразований в расширенной матрице системы (перестановки строк, умножения и деления строк на некоторое число, прибавлению к одной строке другой) могли появиться строки вида

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

соответствующие уравнению вида

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Если во всех уравнениях имеющих вид

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

свободные члены равны нулю, то это означает, что система неопределённа, то есть имеет бесконечное множество решений, а уравнения этого вида – «лишние» и их исключаем из системы.

Пример 6. Решить методом Гаусса систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Составим расширенную матрицу системы. Затем с помощью первого уравнения исключим переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз последующих уравнений. Для этого ко второй, третьей и четвёртой строкам прибавим первую, умноженную соответственно на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь вторую строку прибавим к третьей и четвёртой.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

В результате приходим к системе

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Последние два уравнения превратились в уравнения вида При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Эти уравнения удовлетворяются при любых значениях неизвестных и их можно отбросить.

Чтобы удовлетворить второму уравнению, мы можем для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныевыбрать произвольные значения При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, тогда значение для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеопределится уже однозначно: При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Из первого уравнения значение для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныетакже находится однозначно: При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Как заданная, так и последняя системы совместны, но неопределённы, и формулы

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

при произвольных При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныедают нам все решения заданной системы.

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Метод Гаусса и системы линейных уравнений, не имеющие решений

Следующий пример — несовместная система линейных уравнений, то есть не имеющая решений. Ответ на такие задачи так и формулируется: система не имеет решений.

Как уже говорилось в связи с первым примером, после выполнения преобразований в расширенной матрице системы могли появиться строки вида

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные,

соответствующие уравнению вида

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные
Если среди них есть хотя бы одно уравнение с отличным от нуля свободным членом (т.е. При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные), то данная система уравнений является несовместной, то есть не имеет решений и на этом её решение закончено.

Пример 7. Решить методом Гаусса систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Составляем расширенную матрицу системы. С помощью первого уравнения исключаем из последующих уравнений переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Для этого ко второй строке прибавляем первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к третьей строке — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к четвёртой — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь нужно с помощью второго уравнения исключить переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз последующих уравнений. Чтобы получить целые отношения коэффициентов, поменяем местами вторую и третью строки расширенной матрицы системы.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Для исключения При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз третьего и четвёртого уравнения к третьей строке прибавим вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, а к четвёртой — вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь с помощью третьего уравнения исключим переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Заданная система эквивалентна, таким образом, следующей:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Полученная система несовместна, так как её последнее уравнение При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныене может быть удовлетворено никакими значениями неизвестных. Следовательно, данная система не имеет решений.

Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение

Пример 8. Решить систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Метод Гаусса и системы, в которых число неизвестных меньше числа уравнений

Следующий пример — система линейных уравнений, в которой число неизвестных меньше числа уравнений.

Пример 9. Решить методом Гаусса систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Составляем расширенную матрицу системы. С помощью первого уравнения исключаем из последующих уравнений переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Для этого ко второй строке прибавляем первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к третьей строке — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, к четвёртой — первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Далее новые вторую, третью и четвёртую строки умножаем на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь нужно с помощью второго уравнения исключить переменную При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз последующих уравнений. Проведём подготовительные работы. Чтобы было удобнее с отношением коэффициентов, нужно получить единицу в во втором столбце второй строки. Для этого четвёртую строку умножаем на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, а полученную в результате четвёртую строку меняем местами со второй строкой.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Проведём теперь исключение переменной При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеиз третьего и четвёртого уравнений. Для этого к третьей строке прибавим вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, а к четвёртой — вторую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Четвёртая и третья строки — одинаковые, поэтому четвёртую исключаем из матрицы. А третью умножаем на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Получили следующую систему уравнений, которой эквивалентна заданная система:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеизвестны, а При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныенаходим из первого уравнения:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Ответ: данная система уравнений имеет единственное решение (1; 1; 1).

Видео:Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Метод Гаусса и системы, в которых число неизвестных больше числа уравнений

Следующий пример — система линейных уравнений, в которой число неизвестных больше числа уравнений.

Если при выполнении преобразований в расширенной матрице системы встретилось хотя бы одно уравнение вида

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные(*)

с равным нулю свободным членом, то в итоге получим эквивалентную исходной системе систему линейных уравнений, в которой число уравнений меньше числа переменных, а уравнения вида (*) удовлетворяются при любых значениях неизвестных. Их можно отбросить.

Неизвестным, которые удовлетворяли уравнению вида 0 = 0, например, третьему и четвёртому (*, отброшенным уравнениям), придадим произвольные значения (пример 2). Они чаще всего записываются так: При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Подставляя эти значения в остальные уравнения, не имеющие вида (*), например, первое и второе, получаем формулы, дающие нам значения остальных неизвестных. В них можно подставлять любые численные значения При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Следовательно, существует бесконечное множество выбора значений этих неизвестных, поэтому полученная система уравнений является неопределённой. В этом случае неопределённой является и исходная система.

Пример 10. Решить методом Гаусса систему линейных уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Составляем расширенную матрицу системы. Далее ко второй строке прибавляем первую, умноженную на При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Заданная система эквивалентна, таким образом, следующей:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

В ней отсутствуют уравнения, дающие однозначные значения для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Это равносильно появлению уравнений вида При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные, которые можно отбросить. Мы можем для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныевыбрать произвольные значения При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные. Из первого уравнения значение для При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныенаходится однозначно: При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные.

Как заданная, так и последняя системы совместны, но неопределённы, и формулы

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

при произвольных При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеи При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныедают нам все решения заданной системы.

Видео:Лекция 14. Метод Гаусса.Скачать

Лекция 14. Метод Гаусса.

Метода Гаусса: примеры решения СЛАУ

В данной статье мы:

  • дадим определение методу Гаусса,
  • разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
  • разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.

Видео:12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Метод Гаусса — что это такое?

Метод Гаусса — это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:

  • отсутствует необходимость проверять систему уравнений на совместность;
  • есть возможность решать системы уравнений, где:
  • количество определителей совпадает с количеством неизвестных переменных;
  • количество определителей не совпадает с количеством неизвестных переменных;
  • определитель равен нулю.
  • результат выдается при сравнительно небольшом количестве вычислительных операций.

Видео:14. Метод Гаусса решения систем линейных уравнений ( бесконечное множество решений ). Часть 3Скачать

14. Метод Гаусса решения систем линейных уравнений ( бесконечное множество решений ). Часть 3

Основные определения и обозначения

Есть система из р линейных уравнений с n неизвестными ( p может быть равно n ):

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,

где x 1 , x 2 , . . . . , x n — неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n — числа (действительные или комплексные), b 1 , b 2 , . . . , b n — свободные члены.

Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной, если наоборот — неоднородной.

Решение СЛАУ — совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.

Совместная СЛАУ — система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.

Определенная СЛАУ — это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.

Координатный вид записи:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p

Матричный вид записи: A X = B , где

A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n — основная матрица СЛАУ;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица свободных членов.

Расширенная матрица — матрица, которая получается при добавлении в качестве ( n + 1 ) столбца матрицу-столбец свободных членов и имеет обозначение Т .

T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n

Вырожденная квадратная матрица А — матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.

Видео:Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)

Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.

Прямой ход Гаусса — процесс последовательного исключения неизвестных.

Обратный ход Гаусса — процесс последовательного нахождения неизвестных от последнего уравнения к первому.

Алгоритм метода Гаусса:

Решаем систему из n линейных уравнений с n неизвестными переменными:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n

Определитель матрицы не равен нулю.

  1. a 11 не равен нулю — всегда можно добиться этого перестановкой уравнений системы;
  2. исключаем переменную x 1 из всех уравнений систему, начиная со второго;
  3. прибавим ко второму уравнению системы первое, которое умножено на — a 21 a 11 , прибавим к третьему уравнению первое умноженное на — a 21 a 11 и т.д.

После проведенных действий матрица примет вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n ,

где a i j ( 1 ) = a i j + a 1 j ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i ( 1 ) = b i + b 1 ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n .

Далее производим аналогичные действия с выделенной частью системы:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n

Считается, что a 22 ( 1 ) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:

  • к третьему уравнению систему прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 ;
  • к четвертому прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 и т.д.

После таких манипуляций СЛАУ имеет следующий вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( 2 ) n 3 x 3 + . . . + a ( 2 ) n n x n = b ( 2 ) n ,

где a i j ( 2 ) = a ( 1 ) i j + a 2 j ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i ( 2 ) = b ( 1 ) i + b ( 1 ) 2 ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n . .

Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , действуя по аналоги с предыдущим образцом:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( n — 1 ) n n x n = b ( n — 1 ) n

После того как система приняла такой вид, можно начать обратный ход метода Гаусса:

  • вычисляем x n из последнего уравнения как x n = b n ( n — 1 ) a n n ( n — 1 ) ;
  • с помощью полученного x n находим x n — 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.

Найти решение системы уравнений методом Гаусса:

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4

Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на — a 21 a 11 :

— 1 3 , — а 31 а 11 = — — 2 3 = 2 3 и — а 41 а 11 = — 1 3 .

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = — 1 + ( — 1 3 ) ( — 2 ) — 2 x 1 — 2 x 2 — 3 x 3 + x 4 + 2 3 ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 9 + 2 3 ( — 2 ) x 1 + 5 x 2 — x 3 + 2 x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 4 + ( — 1 3 ) ( — 2 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3

Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2 :

— a 32 ( 1 ) a 22 ( 1 ) = — — 2 3 — 5 3 = — 2 5 и а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 + ( — 2 5 ) ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 23 3 + ( — 2 5 ) ( — 1 3 ) 13 3 x 2 — 4 3 x 3 + 5 3 x 4 + 13 5 ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 14 3 + 13 5 ( — 1 3 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5

Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы — а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 :

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5 ⇔

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 + 41 19 ( — 19 5 x 3 + 11 5 x 4 ) = 19 5 + 41 19 39 5 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19

Обратный ход метода Гаусса:

  • из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
  • из 3-го уравнения получаем: x 3 = — 5 19 ( 39 5 — 11 5 x 4 ) = — 5 19 ( 39 5 — 11 5 × 7 ) = 38 19 = 2 ;
  • из 2-го: x 2 = — 3 5 ( — 1 3 — 11 3 x 4 + 4 3 x 4 ) = — 3 5 ( — 1 3 — 11 3 × 2 + 4 3 × 7 ) = — 1 ;
  • из 1-го: x 1 = 1 3 ( — 2 — 2 x 2 — x 3 — x 4 ) = — 2 — 2 × ( — 1 ) — 2 — 7 3 = — 9 3 = — 3 .

Ответ: x 1 = — 3 ; x 2 = — 1 ; x 3 = 2 ; x 4 = 7

Найти решение этого же примера методом Гаусса в матричной форме записи:

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4

Расширенная матрица системы представлена в виде:

x 1 x 2 x 3 x 4 3 2 1 1 1 — 1 4 — 1 — 2 — 2 — 3 1 1 5 — 1 2 — 2 — 1 9 4

Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на — a 21 a 11 = — 1 3 , — a 31 a 11 = — — 2 3 = 2 3 и н а — а 41 а 11 = — 1 3 .

Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на — а 32 ( 1 ) а 22 ( 1 ) = — 2 3 — 5 3 = — 2 5 и — а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 — 7 3 5 3 | 23 3 0 13 3 — 4 3 5 3 | 14 3

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 + ( — 2 5 ) ( — 5 3 ) — 7 3 + ( — 2 5 ) 11 3 5 3 + ( — 2 5 ) ( — 4 3 ) | 23 3 + ( — 2 5 ) ( — 1 3 ) 0 13 3 + 13 5 ( — 5 3 ) — 4 3 + 13 5 × 11 3 5 3 + 13 5 ( — 4 3 ) | 14 3 + 13 5 ( — 1 3 )

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5

Теперь исключаем переменную x 3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 .

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 + 41 19 ( — 19 5 ) — 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

стала диагональной, т.е. приняла следующий вид:

x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 — 5 3 0 0 | а 2 0 0 — 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 — некоторые числа.

Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

— 11 5 56 19 = — 209 280 , н а — — 4 3 56 19 = 19 42 и н а — 1 56 19 = 19 56 .

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 1 + ( — 19 56 ) 56 19 | — 2 + ( — 19 56 ) 392 19 0 — 5 3 11 3 — 4 3 + 19 42 × 56 19 | — 1 3 + 19 42 × 392 19 0 0 — 19 5 11 5 + ( — 209 280 ) 56 19 | 39 5 + ( — 209 280 ) 392 19 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на

— 11 3 — 19 5 = 55 57 и н а — 1 — 19 5 = 5 19 .

x 1 x 2 x 3 x 4 3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 + 5 19 ( — 19 5 ) 0 | — 9 + 5 19 ( — 38 5 ) 0 — 5 3 11 3 + 55 57 ( — 19 5 ) 0 | 9 + 55 57 ( — 38 5 ) 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на — 2 — 5 3 = 6 5 .

x 1 x 2 x 3 x 4 3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 + 6 5 ( — 5 3 ) 0 0 | — 11 + 6 5 × 5 3 ) 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 0 0 0 | — 9 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

Полученная матрица соответствует системе уравнений

3 x 1 = — 9 — 5 3 x 2 = 5 3 — 19 5 x 3 = — 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.

Ответ: x 1 = — 3 , x 2 = — 1 , x 3 = 2 , x 4 = 7 . ​​​

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы

Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.

Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.

В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.

На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.

Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:

x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 = 14 x — x + 3 x + x = — 1 ⇔

x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 + ( — 2 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = 14 + ( — 2 ) × 7 x — x + 3 x + x + ( — 1 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = — 1 + ( — 1 ) × 7 ⇔

⇔ x 1 + 2 x 2 — x 3 + 3 x 4 = 7 0 = 0 — 3 x 2 + 4 x 3 — 2 x 4 = — 8

Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.

Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид — некоторое число, которое отлично от нуля.

Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).

  • В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ — некоторое число, которое отлично от нуля, то система несовместна.
  • Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
  • Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Метод гаусса можно ли менять строки местами

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Видео:Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее метода Крамера, он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Метод Гаусса состоит из двух этапов – прямого и обратного.

Видео:Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Видео:метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУ

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн. Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Видео:Как решить систему уравнений методом Гаусса? Просто с лидеромСкачать

Как решить систему уравнений методом Гаусса? Просто с лидером

Пример решения системы уравнений методом Гаусс

А теперь – пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Сначала запишем расширенную матрицу:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Вуаля – система приведена к соответствующему виду. Осталось найти неизвестные:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набьете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! Заказать недорого реферат вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Одним из простейших способов решения системы линейных уравнений является прием, основанный на вычислении определителей (правило Крамера). Его преимущество состоит в том, что он позволяет сразу провести запись решения, особенно он удобен в тех случаях, когда коэффициенты системы являются не числами, а какими-то параметрами. Его недостаток – громоздкость вычислений в случае большого числа уравнений, к тому же правило Крамера непосредственно не применимо к системам, у которых число уравнений не совпадает с числом неизвестных. В таких случаях обычно применяют метод Гаусса.

Системы линейных уравнений, имеющие одно и то же множество решений, называются эквивалентными. Очевидно, что множество решений линейной системы не изменится, если какие-либо уравнения поменять местами, или умножить одно из уравнений на какое-либо ненулевое число, или если одно уравнение прибавить к другому.

Метод Гаусса (метод последовательного исключения неизвестных) заключается в том, что с помощью элементарных преобразований система приводится к эквивалентной системе ступенчатого вида. Сначала с помощью 1-го уравнения исключается x1 из всех последующих уравнений системы. Затем с помощью2-го уравнения исключается x2 из 3-го и всех последующих уравнений. Этот процесс, называемый прямым ходом метода Гаусса, продолжается до тех пор, пока в левой части последнего уравнения останется только одно неизвестное xn. После этого производится обратный ход метода Гаусса – решая последнее уравнение, находим xn; после этого, используя это значение, из предпоследнего уравнения вычисляем xn–1 и т.д. Последним находим x1 из первого уравнения.

Преобразования Гаусса удобно проводить, осуществляя преобразования не с самими уравнениями, а с матрицами их коэффициентов. Рассмотрим матрицу:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

называемую расширенной матрицей системы, ибо в нее, кроме основной матрицы системы, включен столбец свободных членов. Метод Гаусса основан на приведении основной матрицы системы к треугольному виду (или трапециевидному виду в случае неквадратных систем) при помощи элементарных преобразованиях строк (!) расширенной матрицы системы.

Пример 5.1. Решить систему методом Гаусса:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Выпишем расширенную матрицу системы и, используя первую строку, после этого будем обнулять остальные элементы:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеПри решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеполучим нули во 2-й, 3-й и 4-й строках первого столбца:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеПри решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Теперь нужно чтобы все элементы во втором столбце ниже 2-й строки были равны нулю. Для этого можно умножить вторую строку на –4/7 и прибавить к 3-й строке. Однако чтобы не иметь дело с дробями, создадим единицу во 2-й строке второго столбца и только

Теперь, чтобы получить треугольную матрицу, нужно обнулить элемент четвертой строки 3-го столбца, для этого можно умножить третью строку на 8/54 и прибавить ее к четвертой. Однако чтобы не иметь дело с дробями поменяем местами 3-ю и 4-ю строки и 3-й и 4-й столбец и только после этого произведем обнуление указанного элемента. Заметим, что при перестановке столбцов меняются местами, соответствующие переменные и об этом нужно помнить; другие элементарные преобразования со столбцами (сложение и умножение на число) производить нельзя!

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеПри решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Последняя упрощенная матрица соответствует системе уравнений, эквивалентной исходной:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Отсюда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x3= –1; из третьего x4 = –2, из второго x2 = 2 и из первого уравнения x1= 1. В матричном виде ответ записывается в виде

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеà

Мы рассмотрели случай, когда система является определенной, т.е. когда имеется только одно решение. Посмотрим, что получится, если система несовместна или неопределенна.

Пример 5.2. Исследовать систему методом Гаусса:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Выписываем и преобразуем расширенную матрицу системы

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеПри решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Записываем упрощенную систему уравнений:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Здесь, в последнем уравнении получилось, что 0=4, т.е. противоречие. Следовательно, система не имеет решения, т.е. она несовместна. à

Пример 5.3. Исследовать и решить систему методом Гаусса:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Решение. Выписываем и преобразуем расширенную матрицу системы:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменныеПри решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

В результате преобразований, в последней строке получились одни нули. Это означает, что число уравнений уменьшилось на единицу:

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Таким образом, после упрощений осталось два уравнения, а неизвестных четыре, т.е. два неизвестных «лишних». Пусть «лишними», или, как говорят, свободными переменными, будут x3 и x4. Тогда

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Записанное подобным образом решение называется общим, поскольку, придавая параметрам a и b различные значения, можно описать все возможные решения системы. à

Вернуться на главную страницу. или ЗАКАЗАТЬ РАБОТУ

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Линейная алгебра, которая преподается в вузах на разных специальностях, объединяет немало сложных тем. Одни из них связаны с матрицами, а также с решением систем линейных уравнений методами Гаусса и Гаусса – Жордана. Не всем студентам удается понять эти темы, алгоритмы решения разных задач. Давайте вместе разберемся в матрицах и методах Гаусса и Гаусса – Жордана.

Видео:Численные методы. Лекция 1. Решение систем линейных уравнений. Метод ГауссаСкачать

Численные методы. Лекция 1. Решение систем линейных уравнений. Метод Гаусса

Основные понятия

Под матрицей в линейной алгебре понимается прямоугольный массив элементов (таблица). Ниже представлены наборы элементов, заключенные в круглые скобки. Это и есть матрицы. Из приведенного примера видно, что элементами в прямоугольных массивах являются не только числа. Матрица может состоять из математических функций, алгебраических символов.

Для того чтобы разобраться с некоторыми понятиями, составим матрицу A из элементов aij. Индексы являются не просто буквами: i – это номер строки в таблице, а j – это номер столбца, в области пересечения которых располагается элемент aij. Итак, мы видим, что у нас получилась матрица из таких элементов, как a11, a21, a12, a22 и т. д. Буквой n мы обозначили число столбцов, а буквой m – число строк. Символ m × n обозначает размерность матрицы. Это то понятие, которое определяет число строк и столбцов в прямоугольном массиве элементов.

Необязательно в матрице должно быть несколько столбцов и строк. При размерности 1 × n массив элементов является однострочным, а при размерности m × 1 – одностолбцовым. При равенстве числа строчек и числа столбцов матрицу именуют квадратной. У каждой квадратной матрицы есть определитель (det A). Под этим термином понимается число, которое ставится в соответствие матрице A.

Еще несколько важных понятий, которые нужно запомнить для успешного решения матриц, – это главная и побочная диагонали. Под главной диагональю матрицы понимается та диагональ, которая идет вниз в правый угол таблицы из левого угла сверху. Побочная диагональ идет в правый угол вверх из левого угла снизу.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Ступенчатый вид матрицы

Взгляните на картинку, которая представлена ниже. На ней вы увидите матрицу и схему. Разберемся сначала с матрицей. В линейной алгебре матрица подобного вида называется ступенчатой. Ей присуще одно свойство: если aij является в i-й строке первым ненулевым элементом, то все другие элементы из матрицы, стоящие ниже и левее aij, являются нулевыми (т. е. все те элементы, которым можно дать буквенное обозначение akl, где k>i, а l -1 , при этом обязательно выполняется условие: A × A -1 = A -1 × A = E, т. е. произведение этих матриц равно единичной матрице (у единичной матрицы элементы главной диагонали являются единицами, а остальные элементы равны нулю).

Важный нюанс: в линейной алгебре есть теорема существования обратной матрицы. Достаточное и необходимое условие существования матрицы A -1 – невырожденность матрицы A. При невырожденности det A (определитель) не равен нулю.

Основные шаги, на которых основывается метод Гаусса – Жордана:

  1. Взгляните на первую строку конкретной матрицы. Метод Гаусса – Жордана можно начинать применять, если первое значение не равно нулю. Если же на первом месте стоит 0, то поменяйте строки местами так, чтобы первый элемент имел отличное от нуля значение (желательно, чтобы число было ближе к единице).
  2. Разделите все элементы первой строки на первое число. У вас получится строка, которая начинается с единицы.
  3. Из второй строки вычтите первую строку, умноженную на первый элемент второй строки, т. е. в итоге у вас получится строка, которая начинается с нуля. Аналогичные действия выполните с остальными строчками. Для того чтобы по диагонали получались единицы, делите каждую строку на ее первый ненулевой элемент.
  4. В итоге вы получите верхнюю треугольную матрицу методом Гаусса – Жордана. В ней главная диагональ представлена единицами. Нижний угол заполнен нулями, а верхний угол – разнообразными значениями.
  5. Из предпоследней строки вычтите последнюю строчку, умноженную на необходимый коэффициент. У вас должна получиться строка с нулями и единицей. Для остальных строк повторите аналогичное действие. После всех преобразований получится единичная матрица.

Пример нахождения обратной матрицы методом Гаусса – Жордана

Для вычисления обратной матрицы нужно записать расширенную матрицу A|E и выполнить необходимые преобразования. Рассмотрим простой пример. На рисунке ниже представлена матрица A.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

  1. Для начала найдем определитель матрицы методом Гаусса (det A). Если этот параметр не окажется равным нулю, то матрица будет считаться невырожденной. Это позволит нам сделать вывод о том, что у A точно есть A -1 . Для вычисления определителя преобразуем матрицу до ступенчатой формы элементарными преобразованиями. Подсчитаем число K, равное числу перестановок строк. Строки мы меняли местами всего 1 раз. Вычислим определитель. Его значение будет равно произведению элементов главной диагонали, умноженному на (–1) K . Результат вычисления: det A = 2.
  2. Составим расширенную матрицу, добавив к исходной матрице единичную матрицу. Полученный массив элементов будем использовать для нахождения обратной матрицы методом Гаусса – Жордана.
  3. Первый элемент в первой строке равен единице. Нас это устраивает, т. к. не нужно переставлять строки и делить данную строку на какое-нибудь число. Начинаем работать со второй и третьей строками. Чтобы первый элемент во второй строке превратился в 0, отнимем от второй строки первую строчку, умноженную на 3. Из третьей строчки вычтем первую (умножения не требуется).
  4. В получившейся матрице второй элемент второй строчки равен –4, а второй элемент третьей строчки равен –1. Поменяем строки местами для удобства. Из третьей строчки вычтем вторую строчку, умноженную на 4. Вторую строчку разделим на –1, а третью – на 2. Получим верхнюю треугольную матрицу.
  5. Из второй строчки отнимем последнюю строчку, умноженную на 4, из первой строчки – последнюю строчку, умноженную на 5. Далее вычтем из первой строчки вторую строчку, умноженную на 2. С левой стороны мы получили единичную матрицу. Справа находится обратная матрица.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

Пример решения СЛУ методом Гаусса – Жордана

На рисунке представлена система линейных уравнений. Требуется найти значения неизвестных переменных, используя матрицу, метод Гаусса – Жордана.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

  1. Составим расширенную матрицу. Для этого вынесем в таблицу коэффициенты и свободные члены.
  2. Решим матрицу методом Гаусса – Жордана. Из строки № 2 вычтем строку № 1. Из строки № 3 вычтем строку № 1, предварительно умноженную на 2.
  3. Поменяем местами строки № 2 и 3.
  4. От строки № 3 отнимем строку № 2, умноженную на 2. Разделим полученную третью строку на –1.
  5. От строки № 2 отнимем строку № 3.
  6. От строки № 1 отнимем строку № 2, умноженную на –1. Сбоку у нас получился столбик, состоящий из цифр 0, 1 и –1. Из этого делаем вывод, что x1 = 0, x2 = 1 и x3 = –1.

При решении систем уравнений методом гаусса нельзя удалять равные или пропорциональные переменные

При желании можно проверить правильность решения, подставив вычисленные значения в уравнения:

  • 0 – 1 = –1, первое тождество из системы является верным;
  • 0 + 1 + (–1) = 0, второе тождество из системы является верным;
  • 0 – 1 + (–1) = –2, третье тождество из системы является верным.

Вывод: используя метод Гаусса – Жордана, мы нашли правильное решение квадратной системы, объединяющей линейные алгебраические уравнения.

Онлайн-калькуляторы

Жизнь современной молодежи, обучающейся в вузах и изучающей линейную алгебру, значительно упростилась. Еще несколько лет назад находить решения систем методом Гаусса и Гаусса – Жордана приходилось самостоятельно. Одни студенты успешно справлялись с задачами, а другие путались в решении, делали ошибки, просили у однокурсников помощи. Сегодня можно при выполнении домашнего задания пользоваться онлайн-калькуляторами. Для решения систем линейных уравнений, поиска обратных матриц написаны программы, которые демонстрируют не только правильные ответы, но и показывают ход решения той или иной задачи.

В интернете есть немало ресурсов со встроенными онлайн-калькуляторами. Матрицы методом Гаусса, системы уравнений решаются этими программами за несколько секунд. Студентам требуется только указывать необходимые параметры (например, количество уравнений, количество переменных).

Поделиться или сохранить к себе: