Разделы: Математика
Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.
Ход урока.
Для первой группы учащихся выдавались следующие задания.
Для каждого значения a решить уравнения:
Задания для второй группы учащихся.
Указать число решений в зависимости от параметра а.
Третья группа решает уравнения, сводящиеся к квадратным.
Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.
Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.
Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.
Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.
Выступление первой группы – решение показательных уравнений вида
Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.
Видео:При каких отрицательных значениях k прямаяy = kx - 4 имеет с параболой ровно одну общую точку?Скачать
Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.
Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.
Если k = 0, b ≠ 0, то 0 · x = b – нет решений.
Если k ≠ 0, то , один корень.
Задание 1. Решить уравнение .
Докладчик решает у доски с комментариями, остальные записывают в тетрадях.
Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).
Исследуем полученное уравнение:
Ответ:
На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.
Выступление второй группы – решение уравнений вида
Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.
Далее идёт диалог ученик–ученик.
- Какое уравнение получили? – Это уравнение степени не выше второй.
- При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
- При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
- От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.
Ответ:
На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.
Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.
Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.
Видео:При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x^2+2x одну общую точкуСкачать
Исходное уравнение (1) равносильно
Далее докладчик задаёт вопросы, а учащиеся отвечают на них.
При каких условиях уравнение (1) имеет один корень?
- При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
- Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
- Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
- Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.
При каких условиях уравнение (1) имеет два корня?
Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.
При каких условиях уравнение (1) не имеет корней?
- Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.
Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?
- Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.
Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.
Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.
Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.
Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.
Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.
Значит уравнение (1) не имеет решений при p > 4.
Ответ:
- При p = 4, p ≤ 0 одно решение.
- При 0 4 нет решений.
На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Домашнее задание.
Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.
Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.
Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.
Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.
Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 –|x| в зависимости от параметра a.
«Методы решения задач с параметрами»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»
Выступление на заседании МО
Методы решения задач
Прокушева Наталья Геннадьевна
г. Лодейное Поле
Видео:Урок 2. №22 ОГЭ. Оформление выколотой точки. Прямая y=kx.Скачать
Задачи с параметрами
Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.
Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.
Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.
Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …
Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:
а) они имеют смысл при одних и тех же значениях параметров;
б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.
Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.
Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение ( неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.
При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.
Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.
Основные типы задач с параметрами
Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.
Видео:2022/23. Лекция 7. Решение задач с параметрамиСкачать
Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.
Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).
Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.
Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).
Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.
Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.
Например, найти значения параметра, при которых:
1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.
Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.
Наиболее массовый класс задач с параметром — задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.
Основные методы решения задач с параметром
Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.
Комментарий. По мнению авторов, аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.
Способ II (графический). В зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a).
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.
Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.
Перейдем теперь к демонстрации указанных способов решения задач с параметром.
1. Линейные уравнения и неравенства с параметрами
Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .
Линейные уравнения с параметрами вида
Если , уравнение имеет единственное решение.
Если , то уравнение не имеет решений, когда , и уравнение имеет бесконечно много решений, когда .
🎬 Видео
№16 Задачи с параметром. ЕГЭ. Задание 18. При каких значениях параметра А система уравнений...Скачать
Уравнения с параметром. Алгебра, 8 классСкачать
РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать
ЗАДАНИЕ 22. ПОСТРОИТЬ ГРАФИК ФУНКЦИИ. НАХОДИМ КОЭФФИЦИЕНТ К. ОГЭ 2021Скачать
При каких значениях параметра уравнение имеет единственный кореньСкачать
При каких значениях параметра а уравнение имеет 4 решенияСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
При каких значениях параметра прямая имеет с графиком ровно одну общую точку.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Постройте график функции, и определите, при каких значениях k график не будет иметь общих точек...Скачать
6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Решение задания 23 из ОГЭ по математикеСкачать
При каких значениях параметра c прямая y=c имеет с графиком ровно одну общую точку.Скачать