При каких значениях параметра а разность корней уравнения равна 1

Квадратные уравнения с параметром

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!

Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

— Что такое квадратное уравнение, как оно выглядит и как решается?

— Что такое дискриминант и куда его пристроить?

— Что такое теорема Виета и где её можно применить?

Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

Пример 1

При каких значениях параметра а разность корней уравнения равна 1

Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.

Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Теперь надо приравнять наш дискриминант к нулю:

При каких значениях параметра а разность корней уравнения равна 1

Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !

Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!

Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)

Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

Пример 2

При каких значениях параметра а разность корней уравнения равна 1

Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

0,5x 2 — 2x + 3a + 1,5 = 0

Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Выписываем в столбик наши коэффициенты a, b, c:

Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!

А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

При каких значениях параметра а разность корней уравнения равна 1

Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

При каких значениях параметра а разность корней уравнения равна 1

А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.

Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

При каких значениях параметра а разность корней уравнения равна 1

Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

При каких значениях параметра а разность корней уравнения равна 1

А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.

Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

При каких значениях параметра а разность корней уравнения равна 1

Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

При каких значениях параметра а разность корней уравнения равна 1

Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Осталось раскрыть скобки и решить простенькое линейное неравенство:

Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

Например, такая задачка из реального варианта ЕГЭ:

Пример 3

При каких значениях параметра а разность корней уравнения равна 1

Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

При каких значениях параметра а разность корней уравнения равна 1

А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

Что ж, аккуратно расписываем наш дискриминант через параметр а:

А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

При каких значениях параметра а разность корней уравнения равна 1

принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

При каких значениях параметра а разность корней уравнения равна 1

Дальше составляем модуль разности этих самых корней:

При каких значениях параметра а разность корней уравнения равна 1

Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

При каких значениях параметра а разность корней уравнения равна 1

И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

При каких значениях параметра а разность корней уравнения равна 1

Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

При каких значениях параметра а разность корней уравнения равна 1

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

А далее по накатанной колее. Считаем дискриминант:

D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

При каких значениях параметра а разность корней уравнения равна 1

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

При каких значениях параметра а разность корней уравнения равна 1

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

При каких значениях параметра а разность корней уравнения равна 1

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

При каких значениях параметра а разность корней уравнения равна 1

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

При каких значениях параметра а разность корней уравнения равна 1

Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

При каких значениях параметра а разность корней уравнения равна 1

Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

При каких значениях параметра а разность корней уравнения равна 1

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

При каких значениях параметра а разность корней уравнения равна 1

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

При каких значениях параметра а разность корней уравнения равна 1

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

При каких значениях параметра а разность корней уравнения равна 1

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a

Упрощаем нашу совокупность с учётом главного условия a>0:

При каких значениях параметра а разность корней уравнения равна 1

Вот так. А теперь решаем самое обычное квадратное неравенство:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

Нас интересует промежуток между корнями. Стало быть,

При каких значениях параметра а разность корней уравнения равна 1

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

При каких значениях параметра а разность корней уравнения равна 1

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

При каких значениях параметра а разность корней уравнения равна 1

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 (a

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

При каких значениях параметра а разность корней уравнения равна 1

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

При каких значениях параметра а разность корней уравнения равна 1

С учётом общего требования a

При каких значениях параметра а разность корней уравнения равна 1

А дальше снова решаем обычное квадратное неравенство:

При каких значениях параметра а разность корней уравнения равна 1

При каких значениях параметра а разность корней уравнения равна 1

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

При каких значениях параметра а разность корней уравнения равна 1

Осталось лишь пересечь этот интервал с нашим новым условием a

При каких значениях параметра а разность корней уравнения равна 1

Вот и второй кусочек ответа готов:

При каких значениях параметра а разность корней уравнения равна 1

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

При каких значениях параметра а разность корней уравнения равна 1

с нулём. Вот так:

При каких значениях параметра а разность корней уравнения равна 1

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

При каких значениях параметра а разность корней уравнения равна 1

Готово дело. Эти два интервала — это пока ещё только решение неравенства

При каких значениях параметра а разность корней уравнения равна 1

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

При каких значениях параметра а разность корней уравнения равна 1

Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

При каких значениях параметра а разность корней уравнения равна 1

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

При каких значениях параметра а разность корней уравнения равна 1

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

При каких значениях параметра а разность корней уравнения равна 1

Всё, задача полностью решена и можно записывать окончательный ответ.

При каких значениях параметра а разность корней уравнения равна 1

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b, при которых уравнение

ax 2 + 3x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 — 4ax + 5a = 0

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2(a-2)x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Задачи с параметрами, сводящиеся к исследованию расположения корней квадратного уравнения

Разделы: Математика

  1. Постановка цели урока:

Рассмотрим, как при решении задач с параметрами используются свойства квадратной функции. Задачи разнообразные по форме и содержанию, но объединены обшей идеей — в основе их решения лежат свойства функции: у=ах 2 +bх+с

Дискриминант, старший коэффициент а и хо=(-b/2а) абсцисса вершины параболы конструируют основу, на которой строится теория решения задач, связанных с квадратичной функцией.

  1. При каких значениях параметра а корни уравнения ах 2 -(2а+1)х+За-1=0 больше 1?

Очевидно, что задача равносильна следующей: “при каких значениях параметра, а корни квадратного трехчлена f(х)=ах -(2а+1)х+За-1 больше 1?

Переход от одной формулировки задач к другой дает возможность использовать основную идею решения, которая связана с описанием свойств квадратного трехчлена и с их геометрической интерпретацией.

В частности, чтобы корни квадратного трехчлена f(х)=ах +bх+с (а≠0) были больше числа d (х1; х2 > d) необходимо и достаточно выполнение условий:

При каких значениях параметра а разность корней уравнения равна 1При каких значениях параметра а разность корней уравнения равна 1

Скажите, а как можно от совокупности двух систем перейти к одной системе

При каких значениях параметра а разность корней уравнения равна 1 При каких значениях параметра а разность корней уравнения равна 1При каких значениях параметра а разность корней уравнения равна 1

Мы получим условие того, что корни квадратного трехчлена больше данного числа d. Неплохо бы помнить данное утверждение, однако заучивать его не надо, гораздо важнее понять механизм возникновения необходимости неравенств и научиться его применить при решении конкретных неравенств и научиться его применить при решении конкретных задач. Вернемся к нашей задаче:

  1. При каких значениях параметра а разность корней уравнения равна 1
  2. а=0

=> х=-1 не удовлетворяет условию задачи

Остается только решить эту систему неравенств (1) при а (1; При каких значениях параметра а разность корней уравнения равна 1)

Скажите, а есть ли другой способ задач? (Этот же результат мы получим, решая неравенство x1>1, где x1 — меньший корень уравнения.)

  • При каких значениях а корни уравнения х 2 -2(а-1)х+2а+1=0 имеют разные знаки и оба по абсолютной величине меньше 4?
  • Как можно перефразировать данное задание? (Например, корни квадратичного трехчлена принадлежат промежутку (-4;4)

При каких значениях параметра а разность корней уравнения равна 1

  • Как можно заменить два последних неравенства в данной конкретной задаче, учитывая, что ветви параболы направлены вверх?

При каких значениях параметра а разность корней уравнения равна 1

Развиваем I — ключевую задачу:

    При каких значениях параметра а оба корня уравнения х 2 -ах+2=0 удовлетворяет условию 1 -2 очень сложно.

  1. Найти а, при которых число -1 лежит между корнями уравнения х 2 +2ах+4а 2 -а-2=0 Мы варьируем условие! Во второй задаче корень лежит между числами, а в третьей число лежит между корнями.

Вернемся ко второй задаче: обязательно ли условие D≥0?

При каких значениях параметра а разность корней уравнения равна 1

Развиваем III ключевую задачу:

3sinх+(4-2а)sinх+1 -а =0 имеем корни разного знака? Sinх=1; |t| ≤ 1

3t 2 — (4 — 2а)t +1 — а 2 = 0

При каких значениях параметра а разность корней уравнения равна 1f(-1)>0
f(1)>0
(0)>0
При каких значениях параметра а разность корней уравнения равна 1При каких значениях параметра а разность корней уравнения равна 1a 2 +2a-8 2 -2a 2 -1>0При каких значениях параметра а разность корней уравнения равна 1При каких значениях параметра а разность корней уравнения равна 1(a+4)(a-2) 0

Ответ: а При каких значениях параметра а разность корней уравнения равна 1(1,2)

    При каких а, уравнение соs 2 х-(а-2)соsх+4а+1=0 не имеет корней? cosх=t |t| 2 -4(4a+1) 2 -12a 0
    f(-1) б х+cos б х+a*sinхсоsх≥0
    sin 4 х-sin 2 хсоs 2 х+соs 4 х+аsinхсоsх≥0
    1-3sin 2 хсоs 2 х+аsinхсоsх≥0

При каких значениях параметра а разность корней уравнения равна 1
При каких значениях параметра а разность корней уравнения равна 1
При каких значениях параметра а разность корней уравнения равна 1

Ответ: При каких значениях параметра а разность корней уравнения равна 1

7. При каких а корни уравнения х 2 -2х-а +1=0 лежат между корнями уравнения

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Квадратные уравнения с параметром

Понятие уравнения с параметром и его решения

Часто на практике создаётся такая математическая модель, в которой приходится решать не одно, а целое «семейство» похожих уравнений.

Рассмотрим несложный пример.

Пусть нам дан прямоугольный участок площадью a. С точки зрения практической, мы хотим обнести участок забором, т.е. нас интересует зависимость периметра от длины x при некоторой площади a (ширина будет равна $frac$):

Допустим, у нас есть материалы, чтобы соорудить забор длиной 100 м.

Это – простейшее уравнение с параметром, в котором один из коэффициентов не задан конкретным числом.

Уравнение относительно переменной x с параметром a – это уравнение F(x,a), в котором значение a не определено и также является переменной величиной.

Решить уравнение с параметром – это найти множество корней $$ для любого значения параметра a .

Решим наше уравнение. Найдём дискриминант:

$$ D = 50^2-4a = 2500-4a = 4(625-a) $$

Чтобы решения существовали, потребуем:

$$ D ge 0 Rightarrow 625-a ge 0 Rightarrow a le 625 $$

При $a lt 625$ два корня $x_ = 25 pm sqrt$

При a = 625 один корень $x_0 = 25$

При $a gt 625$ решений нет

Наша модель немного усложнится, если мы поставим условия, чтобы площадь и длина были строго положительными:

Исследуем решение. Полученный корень $x_2 = 25+ sqrt ge 25 gt 0$ — положительный. И $x_1 = 25- sqrt$ при $0 lt a lt 625$ меняется в пределах $0 lt x_1 lt 25$, т.е. также положительный.

Запишем ответ для модели с условиями:

При $0 lt a lt 625$ два корня $x_ = 25 pm sqrt$

При a = 625 один корень $x_0$ = 25

При $a gt 625$ решений нет

Ответ изменился незначительно, но чтобы его записать, нам пришлось провести дополнительное исследование.

Решить уравнение с параметром F(x,a) при дополнительных условиях на переменную x и параметр a – это найти допустимое множество корней $$ для любого допустимого значения параметра a .

Заметим, что согласно полученным результатам, максимальная площадь, которую мы можем огородить нашим забором длиной 100 м, равна a = 625 $м^2$. Участок при этом представляет собой квадрат с длиной $x_0 = 25$ м и шириной $ frac = 25$ м.

Примеры

Пример 1. При каких p квадрат разности корней уравнения $x^2-4x+p = 0$ равен 32?

Пусть $x_1, x_2$ — корни уравнения. По теореме Виета и условию задачи:

$$ <left< begin x_1+x_2 = 4 \ x_1 x_2 = p \ x_1^2-x_2^2 = 32 end right.> Rightarrow <left< begin x_1+x_2 = 4 \ x_1 x_2 = p \ (x_1+x_2 )(x_1-x_2 ) = 32 end right.> Rightarrow <left< begin x_1+x_2 = 4 \ x_1-x_2 = 8 \ x_1 x_2 = p end right.> Rightarrow $$

$$ Rightarrow <left< begin 2x_1 = 4+8 = 12 \ 2x_2 = 4-8 = -4 \ x_1 x_2 = p end right.> Rightarrow <left< begin x_1 = 6 \ x_2 = -2 \ p = 6 cdot (-2) = -12 end right.> $$

Пример 2. При каких значениях a уравнение

имеет один корень? Найдите этот корень.

$$ D = (a+2)^2-4(a+5) = a^2+4a+4-4a-20 = a^2-16 $$

Уравнение имеет один корень, если D = 0:

$$ a^2-16 = 0 Rightarrow a = pm 4 $$

При a = -4 уравнение имеет вид $x^2+2x+1 = 0$, т.е. $(x+1)^2 = 0$, $x_0 = -1$

При a = 4 уравнение имеет вид $x^2-6x+9 = 0$, т.е. $(x-3)^2 = 0, x_0 = 3$

При a = -4, $x_0$ = -1

При a = 4, $x_0$ = 3

Пример 3. Найдите такое p, чтобы уравнения

$$ x^2+x+p = 0 и x^2+px+1 = 0 $$

имели общий корень. Найдите этот корень.

Общий корень означает, что параболы пересекаются в точке, лежащей на оси OX.

$$ x(1-p) = 1-p Rightarrow left[ begin <left< begin p = 1 \ x in Bbb R — любой end right.> \ <left< begin p neq 1 \ x = 1 end right.> end right. $$

При p = 1 уравнения совпадают $x^2+x+1 = 0$, но решений не имеют, т.к. $D lt 0$.

При x = 1 уравнения парабол имеют вид: $p+2 = 0 Rightarrow p = -2$.

При каких значениях параметра а разность корней уравнения равна 1

При p = 2 уравнения имеют общий корень x = 1.

Пример 4. Найдите все целые значения a, при которых уравнение $frac = frac$ имеет решение.

Особая точка: a = 4. Уравнение $x^2-2x+4 = 0$ решений не имеет, т.к. $D lt 0$.

Решаем уравнение в общем виде:

Потребуем $D ge 0$

$$ -4(a-3)(a-1) ge 0 Rightarrow (a-3)(a-1) le 0 $$

При каких значениях параметра а разность корней уравнения равна 1

Начертим график параболы

Значение $f(a) le 0$ не положительно, только на отрезке

Это значит, что $D ge 0$, и уравнение имеет решения, только при трёх целочисленных a $in$

При a = 1 и a = 3 D = 0, уравнение имеет вид $x^2-2x+1 = 0$ и одно решение $x_0 = 1$.

При a = 2 уравнение имеет вид: $x^2-2x = 0 Rightarrow x(x-2) = 0 Rightarrow left[ begin x_1 = 0 \ x_2 = 2 end right. $

При a = 1 и a = 3 один корень $x_0 = 1$

При a = 2 два корня $x_1 = 0, x_2 = 2$

При всех других целых a уравнение решений не имеет.

Пример 5. При каких b и c уравнение $x^2+bx+c = 0$ имеет корнями b и c?

По условию $x_1 = b, x_2 = c$

По теореме Виета:

$$ <left< begin x_1+x_2 = b+c = -b \ x_1 x_2 = bc = c end right.> Rightarrow <left< begin c = -2b = -2 \ b = 1end right.> $$

Уравнение $x^2+x-2 = 0$ имеет корнями 1 и -2.

Ответ: b = 1, c = -2

Пример 6. Найдите все значения параметра a, при которых уравнения

$$ x^2+(a^2+3a+7)x = 0 и x^2+(4a+19)x+(a^2+7a-44) = 0 $$

имеют один и те же решения.

Старшие коэффициенты парабол одинаковы и равны 1.

Параболы будут иметь одинаковые решения в том случае, если будут полностью совпадать, т.е.:

$$ <left< begin a^2+3a+7 = 4a+19 \ 0 = a^2+7a-44 end right.> Rightarrow <left< begin a^2-a-12 = 0 \ a^2+7a-44 = 0 end right.> Rightarrow <left< begin (a-4)(a+3) = 0 \ (a-4)(a+11) = 0 end right.> Rightarrow a = 4 $$

Кроме того, они могли бы совпадать, если бы все переменные коэффициенты одновременно стали равны 0:

$$ <left< begin a^2+3a+7 = 0 \ 4a+19 = 0 \ a^2+7a-44 = 0 end right.> Rightarrow <left< begin D lt 0, a in varnothing \ a = — frac \ a = end right.> Rightarrow a in varnothing $$

Пример 7. Решите уравнение:

При каких значениях параметра а разность корней уравнения равна 1

При a = 1 уравнение имеет вид $x^2 = 0$ и один корень $x_0 = 0$

📺 Видео

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

#67. Сумма квадратов корней в уравнении с параметром!Скачать

#67. Сумма квадратов корней в уравнении с параметром!

найти при каких значениях параметра А уравнение будет иметь только 1 корень.Скачать

найти при каких значениях параметра А уравнение будет иметь только 1 корень.

Параметр. Общий корень квадратных уравнений.Скачать

Параметр. Общий корень квадратных уравнений.

При каких значениях параметра уравнение имеет единственный кореньСкачать

При каких значениях параметра уравнение имеет единственный корень

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙ

Простейшие уравнения с параметром #1Скачать

Простейшие уравнения с параметром #1

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

798 Алгебра 8 класс, разность корней уравнения, теорема Виета примеры, Квадратное уравнение решитеСкачать

798 Алгебра 8 класс, разность корней уравнения, теорема Виета примеры, Квадратное уравнение решите

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

5. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ ИМЕЕТ КОРЕНЬ, РАВНЫЙ ЧИСЛУ ... ?Скачать

5. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ ИМЕЕТ КОРЕНЬ, РАВНЫЙ ЧИСЛУ ... ?

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика
Поделиться или сохранить к себе: