Алгебра | 5 — 9 классы
При каких значениях p система уравнений не имеет решений?
> ; 3x + py = 1 > ; 2x + y = 7.
Из второго уравнения : y = 7 — 2x, подставим в первое
3x + p(7 — 2x) = 3x + 7p — 2px = 1 < ; = > ; x(3 — 2p) = 1 — 7p, Ясно что при любом$p: 3-2p neq 0$ уравнение имеет решение.
Причем при$p=3/2: 1-7p neq 0$ значит толькопри p = 3 / 2 уравнение не имеет решений.
$left < <atop > right. textless = textgreater left < <atop > right. textless = textgreater left < <atop > right.$
Так как уравнение не имеет решений то
$left < <atop > right. textless = textgreater left < <<p=frac> atop <p neq frac>> right. textless = textgreater p=frac$.
- Найти все значения a при которых система уравнений имеет решение?
- При каком значении параметра p система уравнений имеет одно решение?
- Помогите, прошу Дана система уравнений y = — 5x y = mx — 3 установить, при каких значениях m система : 1) не имеет решений 2) имеет единственное решение?
- При каких значениях а и в система уравнений х — 2у = 32х + ау = в имеет одно решение, бесконечное множество решений, не имеет решения?
- При каком значении решение параметра p система уравнений имеет 3 решения?
- Дана система уравнения : y = mx y = 7x — 2 Установить, при каких значениях m система : 1) Не имеет решений ; 2)имеет единственное решение?
- При каких значениях м система уравнений не имеет решений?
- При каком наименьшем целом значении а система у> ; 2х — 4 ; у< ; 2х — а неровностей имеет хотя бы одно решение?
- При каком значении параметра р система уравнений имеет одно решение ?
- При каких значениях a не имеет решений система неравенств?
- Школе NET
- Register
- Login
- Newsletter
- Онтонио Веселко
- При каких значениях p система уравнений не имеет решений? Помогите решить все! a) <x+2y=3 <x-y=p
- Лучший ответ:
- Мари Умняшка
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- 🔍 Видео
Видео:Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать
Найти все значения a при которых система уравнений имеет решение?
Найти все значения a при которых система уравнений имеет решение.
Видео:#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать
При каком значении параметра p система уравнений имеет одно решение?
При каком значении параметра p система уравнений имеет одно решение?
Видео:6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать
Помогите, прошу Дана система уравнений y = — 5x y = mx — 3 установить, при каких значениях m система : 1) не имеет решений 2) имеет единственное решение?
Помогите, прошу Дана система уравнений y = — 5x y = mx — 3 установить, при каких значениях m система : 1) не имеет решений 2) имеет единственное решение.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
При каких значениях а и в система уравнений х — 2у = 32х + ау = в имеет одно решение, бесконечное множество решений, не имеет решения?
При каких значениях а и в система уравнений х — 2у = 3
2х + ау = в имеет одно решение, бесконечное множество решений, не имеет решения?
Видео:При каких положительных значениях параметра а система уравнений имеет единственное решениеСкачать
При каком значении решение параметра p система уравнений имеет 3 решения?
При каком значении решение параметра p система уравнений имеет 3 решения?
Видео:При каких λ однородная система уравнений имеет ненулевое решение?Скачать
Дана система уравнения : y = mx y = 7x — 2 Установить, при каких значениях m система : 1) Не имеет решений ; 2)имеет единственное решение?
Дана система уравнения : y = mx y = 7x — 2 Установить, при каких значениях m система : 1) Не имеет решений ; 2)имеет единственное решение.
Видео:Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать
При каких значениях м система уравнений не имеет решений?
При каких значениях м система уравнений не имеет решений?
Видео:огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать
При каком наименьшем целом значении а система у> ; 2х — 4 ; у< ; 2х — а неровностей имеет хотя бы одно решение?
При каком наименьшем целом значении а система у> ; 2х — 4 ; у< ; 2х — а неровностей имеет хотя бы одно решение?
Видео:При каких значениях параметра система имеет решение. Задание 18 ЕГЭ по математике (45)Скачать
При каком значении параметра р система уравнений имеет одно решение ?
При каком значении параметра р система уравнений имеет одно решение ?
Видео:311 Алгебра 9 класс. При каких значениях t Уравнение не имеет корнейСкачать
При каких значениях a не имеет решений система неравенств?
При каких значениях a не имеет решений система неравенств.
Если вам необходимо получить ответ на вопрос При каких значениях p система уравнений не имеет решений?, относящийся к уровню подготовки учащихся 5 — 9 классов, вы открыли нужную страницу. В категории Алгебра вы также найдете ответы на похожие вопросы по интересующей теме, с помощью автоматического «умного» поиска. Если после ознакомления со всеми вариантами ответа у вас остались сомнения, или полученная информация не полностью освещает тематику, создайте свой вопрос с помощью кнопки, которая находится вверху страницы, или обсудите вопрос с посетителями этой страницы.
Видео:№16 Задачи с параметром. ЕГЭ. Задание 18. При каких значениях параметра А система уравнений...Скачать
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
- Главная
- Вопросы & Ответы
- Вопрос 422796
Онтонио Веселко
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
При каких значениях p система уравнений не имеет решений? Помогите решить все! a) <x+2y=3 <x-y=p
Видео:ОГЭ Задание 23 Решение заданий с параметромСкачать
Лучший ответ:
Мари Умняшка
Всё очень просто. Правда непонятно зачем дано три системы, если всего неизвестных две.
Но наверное решается так, сначала решается эта пара уравнений:
3x-2y=7
x+y=4
3x-2y=7
2x+2y=8
Тогда х=3, у=1
Теперь эти значения подставляем в третье уравнение:
2x-y=p
2*3-1=р
р=5
Ответ: при р=5 система имеет решение.
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Видео:Параметр | При каких значениях параметра решение неравенства принадлежит отрезку| Задача 17 ЕГЭ 2022Скачать
Немного теории.
Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Видео:Найти все p, при которых уравнение имеет целые корни. Задача с параметромСкачать
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )
Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
🔍 Видео
#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать
Когда система уравнений имеет бесконечное множество решений .Скачать