При каких значениях k квадратное уравнение x2 5x 2k 0 не имеет корней

При каких значениях k квадратное уравнение x2 5x 2k 0 не имеет корней

Вопрос по математике:

При каких значениях k квадратное уравнение x²+5x+2k=0 имеет два корня?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

При дискриминанте большим нуля
Д=25-4*2k>0
25>8k
k thumb_up 6

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Исследование корней квадратного уравнения

Разделы: Математика

«Уравнение – это золотой ключ,
открывающий все математические сезамы»
С. Коваль

Цели урока:

  • систематизирование и обобщение знаний учащихся по теме;
  • развитие математического мышления;
  • повышение интереса к предмету.

План урока:

  1. Орг. момент
  2. Устный опрос: а) работа по опроснику; б) обсуждение
  3. Систематизация и обобщение знаний
  4. Самостоятельная работа
  5. Домашнее задание
  6. Итог урока

Ход урока

1. Учитель сообщает цели и задачи урока.

Учитель: Как вы думаете, почему эпиграфом нашего урока я взяла слова С. Коваль?

2. Работа по опроснику (3 минуты) и обсуждение ответов (5 минут).

7. 3х 4 – х 2 + 16 = 0

5. х 4 – 7х 2 – 2 = 0

6. -2х 2 + 5х + 9 = 0

9. 6х 2 + 3х + 8 = 0

  1. Линейные уравнения: (1, 2, 4) (№3 ?)
  2. Биквадратные: (5, 7)
  3. Какие уравнения имеют один корень? (1)
  4. Какие уравнения не имеют корней? (2, 3, 7, 9. Почему?)
  5. Какие уравнения имеют корни разного знака? (6, 8)
  6. Какие уравнения имеют бесконечное множество корней? (4)
  7. Какие уравнения могут иметь 4 корня? (5)

3. Учитель: Чем отличаются уравнения записанные на доске от уравнений представленные в опроснике?

x 2 – 4х + k = 0, 5nx 2 – x + 5n = 0, kx 2 + 2(k + 1)x + k + 3 = 0

Что такое параметр?

В словаре Ушакова: «ПАРАМЕТР

параметра, м. (от греч. parametreo – меряю, сопоставляя). 1. Величина, входящая в математическую формулу и сохраняющая постоянное значение в пределах одного явления или для данной частной задачи, но при переходе к другому явлению, к другой задаче меняющая свое значение (мат.).»

  1. При каких значениях a уравнение 3x 2 – 6х + a = 0 имеет два положительных корня?
  2. При каких значениях m уравнение x 3 – 4x 2 + mx = 0 имеет два различных корня?
  3. Найти наибольшее целое значение k, при котором уравнение x 2 +x – k = 0 не имеет действительных корней?
  4. Найти наименьшее целое значение a, при котором уравнение x 2 – 2 (a + 2) x = 1 2 + a 2 = 0 имеет два различных действительных корня?
  5. При каком значении a уравнение ax 2 – (a + 1)x +2a – 1 = 0 имеет равные корни?

Решим уравнения № 1 и 2.

№1. 3х 2 – 6х + а = 0

1) Первое условие: два корня, следовательно, D > 0, т. е. D = 36 – 12а > 0, а 2 – 2х + a/3 =0.

3) а > 0 и а 3 – 4x 2 + mx = 0.

1) х (х 2 – 4х + m) = 0

х = 0 или х 2 – 4х + m = 0 – это уравнение должно иметь один корень, это возможно при D = 0, т.е. 16 -4m = 0, m = 4

2) Если m = 0 , то х 3 – 4х 2 = 0, х2 (х -4) = 0 – два корня.

Ответ. Уравнение имеет два корня при m = 0 и m = 4.

4. Уравнения № 3, 4, 5 решаете самостоятельно.

№3. х 2 + х – k = 0 – уравнение не имеет корней при D 2 – 2(а + 2)х + 12 + а 2 = 0 – уравнение имеет два действительных корня при D >0, т.е. 4(а + 2)2 – 4(а 2 + 12) > 0/ : 4

а 2 + 4а + 4 – а 2 – 12 > 0, 4а > 8, а > 2 – наименьшее целое значение а = 3.

Ответ. Наименьшее целое значение а = 3.

№5. ах 2 – (а + 1)х + 2а – 1 = 0 – уравнение должно иметь равные корни, следовательно, а ≠ 0, иначе уравнение обращается в линейное.

D = 0, т. е. (а + 1)2 – 4а(2а – 1) = 0 , а 2 + 2а + 1 – 8а 2 + 4а = 0,

-7а 2 + 6а + 1 =0, D = 36 + 28 = 64, а1 = 1, а2 = (-1/7).

Дополнительно:

№6. При каких значениях m вершины парабол y = x 2 – 4mx + m и y = -x 2 + 8mx + 4 расположены по одну сторону от оси х.

Решение. Найдем координаты вершины первой параболы y = x 2 – 4mx + m : х0 =– = 2m, y0 = 4m 2 – 4m*2m +m = – 4m 2 + m.

Найдем координаты вершины второй параболы y = -x 2 + 8mx + 4:

x0 = -8m/-2 4m, y0 = -16m 2 + 32m 2 + 4 = 16m 2 + 4, т.к. 16m 2 + 4 > 0 при любых m. Вершины парабол расположены по одну сторону от оси х, следовательно, и – 4m 2 + m > 0, m (-4m + 1) > 0. Решая методом интервалов, получим m ∊ (0; 1/4).

Ответ. При m ∊ (0; 1/4 ) вершины парабол расположены по одну сторону от оси х.

5. Домашнее задание.

6. Итог урока.

  • Можно ли применять свойства корней квадратного уравнения для квадратных уравнений с параметрами?
  • Как определить имеет ли уравнение с параметром корни или нет?
  • Если речь идет о корнях одного знака или разного, что нужно применить для ответа на поставленный вопрос?

Урок хочется завершить словами Госсера:

Посредством уравнений, теорем
Он уйму всяких разрешил проблем:
И засуху предсказывал, и ливни –
Поистине его познанья дивны.

Видео:#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

При каких значениях k квадратное уравнение x2 5x 2k 0 не имеет корнейПример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

При каких значениях k квадратное уравнение x2 5x 2k 0 не имеет корней

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

🎥 Видео

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

При каких значениях параметра уравнение имеет единственный кореньСкачать

При каких значениях параметра уравнение имеет единственный корень

№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема ВиетаСкачать

№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема Виета

ЕГЭ по математике // Задание 5, 7 // Неполное квадратное уравнениеСкачать

ЕГЭ по математике // Задание 5, 7 // Неполное квадратное уравнение

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Составьте квадратное уравнение, корнями которого являются числаСкачать

Составьте квадратное уравнение, корнями которого являются числа

Математика, 8 класс. Квадратное уравнение и его корниСкачать

Математика, 8 класс. Квадратное уравнение и его корни

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Квадратное уравнение, дискриминант, формула корнейСкачать

Квадратное уравнение, дискриминант, формула корней

249 Алгебра 8 класс, При каких значениях х имеет смысл выражениеСкачать

249 Алгебра 8 класс, При каких значениях х имеет смысл выражение

Параметры 3. Расположение корней квадратного уравнения. ЕГЭ №18Скачать

Параметры 3. Расположение корней квадратного уравнения. ЕГЭ №18

№5 Неполное квадратное уравнение х^2-3x=0 Как разложить на множители Вынести х за скобку Как решитьСкачать

№5 Неполное квадратное уравнение х^2-3x=0 Как разложить на множители Вынести х за скобку Как решить

1.12.2. Линейная Функция | Сборник 1996-2007Скачать

1.12.2. Линейная Функция | Сборник 1996-2007

Выражение не имеет смысла. Алгебра 8 класс.Скачать

Выражение не имеет смысла. Алгебра 8 класс.

Решение квадратного уравнения с выводом формулы корнейСкачать

Решение квадратного уравнения с выводом формулы корней
Поделиться или сохранить к себе: