Данный калькулятор предназначен для решения тригонометрических уравнений. Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.
К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.
С помощью калькулятора можно вычислить корни тригонометрического уравнения. Для получения полного хода решения нажимаем в ответе Step-by-step.
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Тригонометрические уравнения. Как решать тригонометрические уравнения?
Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.
Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .
Видео:Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать
Как решать тригонометрические уравнения:
Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:
где (t) – выражение с иксом, (a) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:
Решим уравнение с помощью числовой окружности. Для этого: 1) Построим оси. 2) Построим окружность. 3) На оси синусов (оси (y)) отметим точку (-) (frac) . 4) Проведем перпендикуляр к оси синусов через эту точку. 5) Отметим точки пересечения перпендикуляра и окружности. 6)Подпишем значения этих точек: (-) (frac) ,(-) (frac) . 7) Запишем все значения соответствующие этим точкам с помощью формулы (x=t+2πk), (k∈Z): (x=-) (frac) (+2πk), (k∈Z); (x=-) (frac) (+2πn), (n∈Z)
Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .
Внимание! Уравнения (sinx=a) и (cosx=a) не имеют решений, если (a ϵ (-∞;-1)∪(1;∞)). Потому что синус и косинус при любых икс больше или равны (-1) и меньше или равны (1):
Пример. Решить уравнение (cosx=-1,1). Решение: (-1,1 (frac) , (frac) 7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в (π), то все значения можно записать одной формулой:
Опять воспользуемся числовой окружностью. 1) Построим окружность, оси (x) и (y). 2) На оси косинусов (ось (x)) отметим (0). 3) Проведем перпендикуляр к оси косинусов через эту точку. 4) Отметим точки пересечения перпендикуляра и окружности. 5) Подпишем значения этих точек: (-) (frac),(frac) . 6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).
7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.
8) Как обычно в уравнениях будем выражать (x). Не забывайте относиться к числам с (π), так же к (1), (2), (frac) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!
Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений: — Метод введения новой переменной (самый популярный в ЕГЭ). — Метод разложения на множители . — Метод вспомогательных аргументов.
Рассмотрим пример решения квадратно-тригонометрического уравнения
Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .
(D=25-4 cdot 2 cdot 2=25-16=9)
Делаем обратную замену.
Первое уравнение решаем с помощью числовой окружности. Второе уравнение не имеет решений т.к. (cosx∈[-1;1]) и двум быть равен не может ни при каких иксах.
Запишем все числа, лежащие на числовой окружности в этих точках.
Ответ: (x=±) (frac) (+2πk), (k∈Z).
Пример решения тригонометрического уравнения с исследованием ОДЗ:
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Калькулятор онлайн. Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы. Правила ввода функций >> Почему решение на английском языке? >>С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение Решить уравнение
Видео:График функции y=sinx и ее свойства. 10 класс.Скачать
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Уравнение cos(х) = а
Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Уравнение sin(х) = а
Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а
Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Заменяя cos 2 (х) на 1 — sin 2 (х), получаем 2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или 2 sin 2 (х) + 5 sin(х) — 3 = 0. Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5 1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1; 2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb ) Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла. Разделим обе части этого уравнения на ( sqrt ):