Преобразовать уравнение перейдя к новым независимым переменным u и v если

Математический портал

Видео:Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными
  • Вы здесь:
  • HomeПреобразовать уравнение перейдя к новым независимым переменным u и v если
  • Математический анализПреобразовать уравнение перейдя к новым независимым переменным u и v если
  • Замена переменных в дифференциальных выражениях.

Преобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v если

Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4frac+2x^3frac-y=0,$$ полагая $x=frac.$

Решение.

Подставим найденные значения производных и выражение $x=frac$ в заданное уравнение.

Ответ: $frac

-y=0.$

7.167. Преобразовать уравнение $$3left(fracright)^2-fracfrac-fracleft(fracright)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$frac=frac<frac>,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=cosvarphi dr-rsinvarphi dvarphi,qquad dy=sinvarphi dr+rcosvarphi dvarphi,$$

$$r^4 dvarphi^2=r^2sin2varphi dr^2+r^4sin 2varphi dvarphi^2Rightarrow$$

$$sin2varphi dr^2=(1-sin 2varphi)r^2 dvarphi^2 Rightarrowleft(fracright)^2=frac r^2Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)frac-(x-y)frac=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=lnsqrt,,, v=arctgfrac.$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)frac+(1-y^2)frac=x+yz,$$ приняв за новые независимые переменные $u=yz-x,,, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =fraccdot left(-dx+zdy+ydzright) +fraccdot left(zdx+xdz-dy right)Rightarrow$$

Подставим найденные выражения $frac$ и

$frac$ в заданное уравнение. Получим

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Переход к новым переменным в дифференциальном уравнении

Видео:Могилевский И. Е. - Математический анализ II - Замена независимых переменныхСкачать

Могилевский И. Е. - Математический анализ II - Замена независимых переменных

Математический портал

Видео:Дифференциальные уравнения с разделенными переменными. 11 класс.Скачать

Дифференциальные уравнения с разделенными переменными. 11 класс.

Search

  • Вы здесь:
  • HomeПреобразовать уравнение перейдя к новым независимым переменным u и v если
  • Математический анализПреобразовать уравнение перейдя к новым независимым переменным u и v если
  • Замена переменных в дифференциальных выражениях.

Преобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v еслиПреобразовать уравнение перейдя к новым независимым переменным u и v если

Видео:Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4frac +2x^3frac -y=0,$$ полагая $x=frac .$

Решение.

Подставим найденные значения производных и выражение $x=frac $ в заданное уравнение.

Ответ: $frac -y=0.$

7.167. Преобразовать уравнение $$3left(frac right)^2-frac frac -frac left(frac right)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$frac =frac >,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=cosvarphi dr-rsinvarphi dvarphi,qquad dy=sinvarphi dr+rcosvarphi dvarphi,$$

$$r^4 dvarphi^2=r^2sin2varphi dr^2+r^4sin 2varphi dvarphi^2Rightarrow$$

$$sin2varphi dr^2=(1-sin 2varphi)r^2 dvarphi^2 Rightarrowleft(frac right)^2=frac r^2Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)frac -(x-y)frac =0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=lnsqrt ,,, v=arctgfrac .$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)frac +(1-y^2)frac =x+yz,$$ приняв за новые независимые переменные $u=yz-x,,, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =frac cdot left(-dx+zdy+ydzright) +frac cdot left(zdx+xdz-dy right)Rightarrow$$

Подставим найденные выражения $frac $ и

$frac $ в заданное уравнение. Получим

Видео:12. Интегрирующий множитель. Уравнения в полных дифференциалахСкачать

12. Интегрирующий множитель. Уравнения в полных дифференциалах

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении (displaystyle x^2+frac +xfrac +y=0) сделать замену независимой переменной (x=e^t).

(triangle) Если (z(t) = y(e^t)), то, применяя правило нахождения производной сложной функции, получаем
$$
frac =e^tfrac =xfrac ,nonumber
$$
откуда (displaystyle frac =xfrac ).

Заметим, что уравнение (displaystyle frac +z=0) является уравнением гармонических колебаний, а его решением является (z=C_ sin t + C_2cos t). Поэтому при (x > 0) решение исходного уравнения имеет следующий вид: (y= C_1 sin (ln x) + C_2cos (ln x)). Так как уравнение не изменяет своего вида при замене (x) на (-x), то при любом (xin R, xneq 0), решение имеет следующий вид:
$$
y(x)=C_1sin(ln |x|) + C_2cos(ln |x|).qquadblacktrianglenonumber
$$

(triangle) Умножим первое уравнение на (x), второе на (y) и сложим. Аналогично умножим первое уравнение на (y) и вычтем из него второе уравнение, умноженное на (x). Получим новую систему уравнений, при (x^2+y^2 > 0) эквивалентную исходной системе уравнений,
$$
left displaystyle xfrac +yfrac =-2k(x^2+y^2)^2,\displaystyle yfrac -xfrac =y^2+x^2.endright.label
$$

Заметим, что система eqref легко решается. Получаем решение в виде:
$$
r=frac >,quad varphi=varphi_0+tquad (-t_0 Пример 3.

Преобразовать уравнение (y’y»’-3(y»)^2=x), принимая (y) за независимую переменную, а (x) — за неизвестную функцию.

Таким образом, при (y’neq 0) уравнение преобразуется к виду (x»’+x(x’)^5=0). Это частный случай уравнения общего вида (x»’=Phi(y,x,x’,x»)) с непрерывно дифференцируемой в (R^4) функцией (Phi(y,u,v,w)). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. (blacktriangle)

Преобразовать выражение (omega=displaystyle frac +frac ) к полярным координатам, полагая (x=rcosvarphi, y=rsinvarphi). Найти решение уравнения Лапласа (displaystyle frac +frac =0), зависящее только от полярного радиуса (r).

Пусть (u=v(r)) есть решение уравнения Лапласа, зависящее только от (r). Тогда функция (v(r)) должна быть решением дифференциального уравнения
$$
frac +frac1rfrac =0quadLongleftrightarrowquadfrac left(rfrac right)=0nonumber
$$
$$
rfrac =C,quadLongrightarrowquad v=C_1ln r+C_2,label
$$
где (C_1) и (C_2) — произвольные постоянные. (blacktriangle)

Сделать в уравнении колебаний струны
$$
frac -a^2frac =0,quad a > 0,quad -infty Решение.

Решение уравнения (displaystylefrac =0) легко находится. Так как (displaystylefracpartial left(frac right)=0), то (displaystylefrac =varphi(eta)), где (varphi(eta)) — произвольная непрерывная функция (eta).

Пусть (Phi(eta)) есть ее первообразная на (R). Тогда, интегрируя уравнение (omega_ =varphi(eta)), получаем, что (omega=Phi(eta)+Psi(xi)), где (Psi(xi)) — произвольная функция.

Если считать, что функции (Phi(eta)) и (Psi(xi)) есть непрерывно дифференцируемые функции, то общее решение уравнения eqref имеет следующий вид:
$$
u(x,t)=Psi(x-at)+Phi(x+at).quadblacktrianglenonumber
$$

Видео:Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Замена переменных

Очень часто в выражениях, содержащих производные, приходится переходить к новым переменным.

Внимание!
Если необходимо выполнить замену переменных в дифференциальном выражении, I в Maple в пакете PDEtools есть процедура dchange(). Первым параметром этой процедуры указывают равенство (или множество, состоящее из равенств), определяющее переход от старых переменных к новым, а вторым параметром — выражение, в котором следует выполнить эту замену. Кроме того, может использоваться ряд опций, информация о которых есть в справочной системе Maple. Ниже приведен пример использования процедуры dchange().

Сначала подключаем пакет.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Новая переменная вводится согласно соотношению х =ехр(/)

Преобразовать уравнение перейдя к новым независимым переменным u и v если

После упрощения получаем следующее

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Замену переменных можно выполнить и в том случае, если переменных несколько. Рассмотрим выражение

Преобразовать уравнение перейдя к новым независимым переменным u и v если

В этом выражении перейдем к новым переменным и и v согласно соотношениям х = uv и у = (и1 -v2)/2 , и после упрощения получим следующее.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Процедура dchange() полезна во многих случаях. Однако желательно уметь обходиться и без нее. Рассмотрим, как без специальных команд приведения выражений к новым переменным выполнить подобные замены.

Преобразовать к полярным координатам уравнение у'(х) =x+y/x-y

Опишем процедуру, посредством которой в дальнейшем будет осуществляться переход к новым координатам. Параметрами процедуры будут новая переменная t, новая функция u(t) и две функции f и g, посредством которых выполняется переход от старых переменной и функции к новым.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Тело процедуры состоит из одного выражения, определяющего производную от старой функции по старой переменной в терминах новой функции и новой переменной.

Определим функции перехода от декартовой системы координат к полярной.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Теперь запишем декартовы координаты через полярные (это понадобится в дальнейшем).

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Новая процедура позволяет выразить производную в полярных координатах.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Исходное уравнение будет записано следующим образом.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Поскольку предварительно декартовы координаты были выражены через полярные, правая часть равенства будет представлена тоже в полярной системе координат.

В полученном уравнении выделим производную. Для этого решим уравнение относительно этой производной.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Таким образом, можем записать окончательный результат.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

В последней команде левая часть уравнения нужна для формального отображения символа производной. Однако следует иметь в виду, что вычислительным ядром Maple левая часть уравнения как производная не интерпретируется. Чтобы равенство можно было в дальнейшем трактовать как дифференциальное уравнение, следует воспользоваться процедурой Diff().

Перейти к новым переменным и , v, w в уравнении Преобразовать уравнение перейдя к новым независимым переменным u и v если

В отличие от предьщущего случая, здесь выражение содержит частные производные, а функции (старая и новая) являются функциями двух переменных.

Определим уравнение, которое следует преобразовать.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Теперь у процедуры три параметра-функции, определяющие правила перехода от старых переменных и функции к новым.

В соответствии с правилами перехода к новым переменным, определяем юцедуру, аргументами которой выступают законы перехода F, G и Н к новым параметрам u, v и w.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Уравнения Eql i1 E(J2 связывают старые производные с новыми. Система этих уравнений решает относительно производных от функции z (команда solve()). мее задаем закон61 перехода от старых переменных и функции к новым.

Преобразовать уравнение перейдя к новым независимым переменным u и v если

Переменной S присваиваем в качестве значения результат выполнения процедуры преобразования производных. > S:=VarChange(F,G,H,u,v,w);

Преобразовать уравнение перейдя к новым независимым переменным u и v если

После этого в уравнении Eq производные от z по х и у, а также сами пере-Гменные и функцию следует выразить через новые параметры. Выполняется такая замена с помощью процедуры subs().

На заметку
Ссылки rhs (S [ 1 ]) и rhs (S [ 2 ]) возвращают выражения для частных производных функции z — это правые части первого и второго равенств, являющихся элементами множества S.

Видео:11. Уравнения в полных дифференциалахСкачать

11. Уравнения в полных дифференциалах

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении (displaystyle x^2+frac+xfrac+y=0) сделать замену независимой переменной (x=e^t).

(triangle) Если (z(t) = y(e^t)), то, применяя правило нахождения производной сложной функции, получаем
$$
frac=e^tfrac=xfrac,nonumber
$$
откуда (displaystyle frac=xfrac).

Заметим, что уравнение (displaystyle frac+z=0) является уравнением гармонических колебаний, а его решением является (z=C_sin t + C_2cos t). Поэтому при (x > 0) решение исходного уравнения имеет следующий вид: (y= C_1 sin (ln x) + C_2cos (ln x)). Так как уравнение не изменяет своего вида при замене (x) на (-x), то при любом (xin R, xneq 0), решение имеет следующий вид:
$$
y(x)=C_1sin(ln |x|) + C_2cos(ln |x|).qquadblacktrianglenonumber
$$

В системе уравнений:
$$
left<begindisplaystylefrac=y-2kx(x^2+y^2),\displaystylefrac=-x-2kx(x^2+y^2),\displaystyle k > 0,endright.nonumber
$$
перейти к полярным координатам.

(triangle) Умножим первое уравнение на (x), второе на (y) и сложим. Аналогично умножим первое уравнение на (y) и вычтем из него второе уравнение, умноженное на (x). Получим новую систему уравнений, при (x^2+y^2 > 0) эквивалентную исходной системе уравнений,
$$
left<begindisplaystyle xfrac+yfrac=-2k(x^2+y^2)^2,\displaystyle yfrac-xfrac=y^2+x^2.endright.label
$$

Но (x^2+y^2=r^2), (x=rcosvarphi), (y=rsinvarphi). Поэтому систему eqref можно записать в виде:
$$
left<begindisplaystyle rfrac=-2kr^4,\displaystylefrac=1.endright.Longleftrightarrowleft<begindisplaystylefrac=-2kr^3,\displaystylefrac=1.endright.label
$$

Заметим, что система eqref легко решается. Получаем решение в виде:
$$
r=frac<sqrt>,quad varphi=varphi_0+tquad (-t_0 Пример 3.

Преобразовать уравнение (y’y»’-3(y»)^2=x), принимая (y) за независимую переменную, а (x) — за неизвестную функцию.

Таким образом, при (y’neq 0) уравнение преобразуется к виду (x»’+x(x’)^5=0). Это частный случай уравнения общего вида (x»’=Phi(y,x,x’,x»)) с непрерывно дифференцируемой в (R^4) функцией (Phi(y,u,v,w)). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. (blacktriangle)

Преобразовать выражение (omega=displaystyle frac+frac) к полярным координатам, полагая (x=rcosvarphi, y=rsinvarphi). Найти решение уравнения Лапласа (displaystyle frac+frac=0), зависящее только от полярного радиуса (r).

Пусть (u=v(r)) есть решение уравнения Лапласа, зависящее только от (r). Тогда функция (v(r)) должна быть решением дифференциального уравнения
$$
frac+frac1rfrac=0quadLongleftrightarrowquadfracleft(rfracright)=0nonumber
$$
$$
rfrac=C,quadLongrightarrowquad v=C_1ln r+C_2,label
$$
где (C_1) и (C_2) — произвольные постоянные. (blacktriangle)

Сделать в уравнении колебаний струны
$$
frac-a^2frac=0,quad a > 0,quad -infty Решение.

Решение уравнения (displaystylefrac=0) легко находится. Так как (displaystylefracpartialleft(fracright)=0), то (displaystylefrac=varphi(eta)), где (varphi(eta)) — произвольная непрерывная функция (eta).

Пусть (Phi(eta)) есть ее первообразная на (R). Тогда, интегрируя уравнение (omega_=varphi(eta)), получаем, что (omega=Phi(eta)+Psi(xi)), где (Psi(xi)) — произвольная функция.

Если считать, что функции (Phi(eta)) и (Psi(xi)) есть непрерывно дифференцируемые функции, то общее решение уравнения eqref имеет следующий вид:
$$
u(x,t)=Psi(x-at)+Phi(x+at).quadblacktrianglenonumber
$$

💡 Видео

Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать

Решение дифференциальных уравнений. Практическая часть. 11 класс.

11. Производная неявной функции примерыСкачать

11. Производная неявной функции примеры

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Математический анализ, 42 урок, Замена переменных в двойном интегралеСкачать

Математический анализ, 42 урок, Замена переменных в двойном интеграле

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Замена переменных в дифференциальных уравнениях.Скачать

Замена переменных в дифференциальных уравнениях.

27. Дифференцирование неявной функции двух переменныхСкачать

27. Дифференцирование неявной функции двух переменных

13.10.2023 Практика 8. Замена переменных в уравнениях в частных производныхСкачать

13.10.2023 Практика 8. Замена переменных в уравнениях в частных производных

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами
Поделиться или сохранить к себе: