Преобразовать систему уравнений к итерационному виду

Решение СЛАУ методом простой итерации

Назначение сервиса . Онлайн-калькулятор предназначен для решения СЛАУ методом простой итерации в онлайн режиме (см. пример решения). Для проверки решения генерируется шаблон в Excel .

  • Шаг №1
  • Шаг №2
  • Видеоинструкция

Рассмотрим достаточные условия сходимости итерационной последовательности <xn>.
Практически, для применения метода итерации систему линейных уравнений удобно «погрузить» в одну из трёх следующих метрик:
Преобразовать систему уравнений к итерационному виду(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: Преобразовать систему уравнений к итерационному виду, т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: Преобразовать систему уравнений к итерационному виду, т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: Преобразовать систему уравнений к итерационному виду, т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы

Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).
Преобразовать систему уравнений к итерационному виду
Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:
Преобразовать систему уравнений к итерационному виду
Последовательные приближения будем искать по формулам:
Преобразовать систему уравнений к итерационному виду
Получаем:
x 1 =(-1.9022; 0.4889; 2.1456), x 2 =(-1.1720; 0.6315; 1.2389).
Для оценки погрешности в метрике ρ1 вычисляем коэффициент μ
Преобразовать систему уравнений к итерационному виду.
Вычисляем погрешность: Преобразовать систему уравнений к итерационному виду

При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Метод итераций для системы уравнений в Excel

Для вычисления точности epsilon .
Итерация №1: =ABS(B7)-ABS(B6);=ABS(C7)-ABS(C6);=ABS(D7)-ABS(D6)
Итерация №2: =ABS(B8)-ABS(B7);=ABS(C8)-ABS(C7);=ABS(D8)-ABS(D7)
Скачать шаблон решения.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Видео:Как привести матрицу к ступенчатому виду - bezbotvyСкачать

Как привести матрицу к ступенчатому виду - bezbotvy

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Методы Зейделя и простой итерации

Вы будете перенаправлены на Автор24

Методы Зейделя и простой итерации — это методы решения систем линейных алгебраических уравнений при помощи итераций.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Методы решения систем линейных алгебраических уравнений

Методы решения систем линейных алгебраических уравнений подразделяются на прямые, являющиеся точными, и итерационные, которые являются приближёнными. Прямые методы базируются на исполнении не бесконечного количества арифметических действий. В качестве примера таких методов можно привести метод обратной матрицы, метод Гаусса, метод Гаусса-Жордана, метод прогонки для трех диагональных матриц и так далее. Сущность итерационных методов состоит в том, чтобы путём последовательных приближений найти решение системы с требуемой точностью. Наиболее распространёнными итерационными методами считаются метод простых итераций и метод Зейделя. Они фактически являются эквивалентными, но конечно имеют и отличия.

Данные предполагают наличие больших расчетных объемов, однако это не мешает им обладать достаточно простой структурой. Как отмечалось выше, в итерационных методах за счет предыдущих приближений могут быть получены новые приближения, и, в случае удовлетворения системой условию сходимости, эти приближения имеют всё меньше отличий от аналитического решения.

В итерационных методах обычно присутствуют следующие основные этапы:

  1. Приведение исходной системы вида $ ¯A * ¯x = ¯b $ к итерационной форме.
  2. Осуществление проверки условия сходимости.
  3. Реализация решения системы выбранным методом.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Метод простых итераций

Для систем общего вида должно выполняться тождество m = n, где m — это число уравнений в системе, а n — это количество неизвестных.

То есть, нет смысла в решении не доопределенных (m меньше n) и переопределенных (m больше n) систем уравнений, так как их можно свести за счёт элементарных алгебраических преобразований к нормальным (m=n) системам линейных уравнений. Иначе говоря, когда присутствует «ненормальная» система уравнений, то перед началом использования метода простых итераций, следует преобразовать её в нормальную.

Готовые работы на аналогичную тему

Систему линейных уравнений можно записать в матричной форме, где:

  • A является матрицей коэффициентов.
  • b является вектором свободных членов.
  • x является вектором неизвестных.

В качестве примера рассмотрим следующую систему:

Преобразовать систему уравнений к итерационному виду

Рисунок 1. Система уравнений. Автор24 — интернет-биржа студенческих работ

Представим её в матричной форме:

Преобразовать систему уравнений к итерационному виду

Рисунок 2. Система уравнений в матричной форме. Автор24 — интернет-биржа студенческих работ

Первый этап итерационного метода заключается в преобразовании исходной системы, то есть матрицы А и вектора b в итерационную форму, где С и d являются итерационными формами исходных данных.

Преобразование в итерационный вид может быть реализована по следующим формулам:

$c_ = -a_ / a_$ $D_i = b_i / a_$ где i, j = 1,2,3…

Необходимо заметить, что диагональные компоненты новой матрицы обнуляются, хотя должны быть равны -1. В результате для рассматриваемой системы получается:

Преобразовать систему уравнений к итерационному виду

Рисунок 3. Матрица. Автор24 — интернет-биржа студенческих работ

Если выполнять преобразование исходной системы к итерационной форме, то она не удовлетворит условию сходимости:

Преобразовать систему уравнений к итерационному виду

Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ

То есть отдельные элементы матрицы C оказываются больше единицы. А по условию сходимости, приведённому выше, очевидно, что, если хотя бы один элемент будет больше единицы, то условие не выполнится, и решение системы путем простых итераций найти невозможно. Прежде чем осуществлять этапы итерационных методов, следует привести исходную систему к виду, в котором все диагональные компоненты будут максимальными по модулю в своих строках. Лишь при этом виде матрицы коэффициентов будет выполняться условие сходимости.

Очевидно, что в рассматриваемом примере третий элемент третьей строки по модулю больше других. Его следует оставить неизменным. Необходимо поменять местами первую и вторую строки, а далее умножить строку, ставшую первой, на минус единицу и сложить её с новой второй строкой. В результате получится:

Преобразовать систему уравнений к итерационному виду

Рисунок 5. Матрица. Автор24 — интернет-биржа студенческих работ

Теперь при подстановке в формулы итерационная форма получится верной и второй этап, то есть проверка условия сходимости, может быть успешно пройден. Если же система не проходит эту проверку, то приближения не будут сходиться к реальному решению, и ответ получен не будет. Если же условие сходимости исполняется, то стратегия метода простых итераций может быть применена и можно переходить к третьему этапу. В конечном счете будет получена система линейных алгебраических уравнений в итерационной форме:

Преобразовать систему уравнений к итерационному виду

Рисунок 6. Система линейных уравнений. Автор24 — интернет-биржа студенческих работ

Здесь $x_1, x_2, x_3$ являются приближениями, которые получаются на текущем шаге итерации за счет приближений, найденных на предыдущей итерации — $x^0_1, x^0_2, x^0_3$.

Итерационный процесс по методу простых итераций продолжается до тех пор, пока вектор приближений не придёт к необходимой точности, то есть, пока не исполнится условие выхода:

$Max|x_i – x^0_i|$ ∠ $ε$

Здесь ε является требуемой точностью.

Видео:8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУСкачать

8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУ

Метод Зейделя

Как уже отмечалось выше, метод простых итераций и метод Зейделя, по своей сути, являются идентичными. Разница заключается в том, что в методе Зейделя вычисление вектора приближений на текущей итерации выполняется с применением данных, которые были получены ни только на предыдущей, но и на исполняемой итерации. Это означает, что элемент x1 определяется через x2 и x3, величины которых были рассчитаны на предыдущей итерации, а последующий элемент x2 уже рассчитывается на основании x1, найденного именно на текущей итерации, и x3, вычисленного на предыдущей. Иначе говоря, данные в методе Зейделя для определения вектора X используются в процессе расчётов по мере их вычисления. А в методе простых итераций применяются данные, которые были получены именно на предыдущей итерации.

На основании этого отличия можно сделать вывод о том, что метод Зейделя имеет лучшую сходимость в сравнении с методом простых итераций, поскольку для него характерна тенденция применения приближений, которые получаются по ходу процесса и являются наиболее близкими к конечному результату.

Ниже представлена программная реализация метода Зейделя:

Procedure Zeidel(C:array of array of real;d:array of real;n:integer);

🔥 Видео

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Метод итерацийСкачать

Метод итераций

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ
Поделиться или сохранить к себе: