Иррациональные выражения и их преобразования
В прошлый раз мы вспомнили (или узнали — кому как), что же такое корень n-й степени , научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.
Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными. Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.
Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:
при
Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны — как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого — с прямого применения формул или их комбинаций.
Простое применение формул
В этой части будут рассматриваться простые и безобидные примеры — без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема — с чего начинать? Ответ здесь простой — не знаешь, что нужно — делай что можно. Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:
Вычислить:
Даже в таком простеньком примере возможны несколько путей к ответу.
Первый — просто перемножить корни по первому свойству и извлечь корень из результата:
Второй вариант такой: не трогаем, работаем с . Выносим множитель из-под знака корня, а дальше — по первому свойству. Вот так:
Решать можно как больше нравится. В любом из вариантов ответ получается один — восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 — это 8 в кубе, то не беда: можно записать 512 как 2 9 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:
Вычислить: .
Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать — тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе вынести множители из-под корня. Причём вынести по максимуму:
И теперь всё наладилось:
Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и — готово дело. 🙂
Добавим теперь немного дробей.
Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:
А можно сразу воспользоваться формулой деления корней:
Как видим, и так, и сяк — всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…
Разберём теперь самый последний пример из домашнего задания прошлого урока:
Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное — не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 — степени двойки. Первое что нужно сделать — привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:
Число можно упростить, сократив двойку под корнем с четвёркой в показателе корня:
Теперь, согласно корню из произведения:
.
В числе выносим двойку за знак корня:
А с выражением расправляемся по формуле корня из корня:
Значит, первый множитель запишется вот так:
.
Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет — преобразуем к одинаковым. Берёмся за второй множитель.)
Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо — сокращаем показатели по пятой формуле:
Вставляем всё в исходный пример и получаем:
Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там — видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные — 2, 3, 4, 6 — делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю — к 12:
Считаем и получаем:
Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать. Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.
Немного сложения / вычитания и формул сокращённого умножения
К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни — это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам — раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.
Например, каждому ясно, что . Точно так же одинаковые корни можно совершенно спокойно между собой складывать/вычитать:
Если корни разные, то ищем способ сделать их одинаковыми — внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.
Смотрим первый пример.
Найти значение выражения: .
Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:
Стало быть, .
Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня. А затем просто привели подобные.) Решаем дальше.
Найти значение выражения:
С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству — делаем из произведения двух корней один корень:
А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:
Теперь осталось только извлечь корень: .
Дальше очень похожий пример, но посложнее.
Вычислить:
Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим — сумма. Очень похоже на формулу разности квадратов. Но… Корни — разные! Первый квадратный, а второй — четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»
Если вы мыслили примерно так же, то вы — на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:
Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:
«Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»
Верно! Выносим четвёрку:
.
А теперь — дело техники:
.
Вот так распутываются сложные примеры. ) Теперь пора потренироваться с дробями.
Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? 🙂 Возводим в квадрат, выносим множители, сокращаем показатели (где надо):
Во как! Получили в точности знаменатель нашей дроби. ) Значит, вся дробь, очевидно, равна единице:
Ещё пример. Только теперь на другую формулу сокращённого умножения.)
Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и — поехали!
Выносим множители из-под корней:
Следовательно,
.
Теперь всё нехорошее великолепно сокращается и получается:
Что ж, поднимаемся на следующий уровень. 🙂
Буквы и дополнительные условия
Буквенные выражения с корнями — штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях. А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение. Ключевой формулой в задачах этого пункта будет четвёртая формула:
С корнями нечётной степени вопросов никаких — там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.
Упростить: , если .
Казалось бы, всё просто. Получится просто икс. ) Но зачем же тогда дополнительное условие ? В таких случаях полезно прикинуть на числах. Чисто для себя.) Если , то икс — заведомо отрицательное число. Минус три, например. Или минус сорок. Пусть . Можно минус три возвести в четвёртую степень? Конечно! Получится 81. Можно из 81 извлечь корень четвёртой степени? А почему нет? Можно! Получится тройка. Теперь проанализируем всю нашу цепочку:
Что мы видим? На входе было отрицательное число, а на выходе — уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:
Кстати сказать, если бы мы воспользовались формулой , то, вспомнив определение модуля, сразу получили бы верный ответ. Поскольку
Вынести множитель за знак корня: , где .
Первый взгляд — на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:
Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.
Множитель | a | так и оставляем без изменений: у нас нету никакого условия на букву a . Мы не знаем, положительное она или отрицательная. Следующий модуль | b 2 | можно смело опустить: в любом случае выражение b 2 неотрицательно. А вот насчёт | c 3 | — тут уже задачка.) Если , то и c 3 c 3 | = — c 3 . Итого верное решение будет такое:
А теперь — обратная задача. Не самая простая, сразу предупреждаю!
Внести множитель под знак корня: .
Если вы сразу запишете решение вот так
,
то вы попали в ловушку. Это неверное решение! В чём же дело?
Давайте вглядимся в выражение под корнем . Под корнем четвёртой степени, как мы знаем, должно находиться неотрицательное выражение. Иначе корень смысла не имеет.) Поэтому А это, в свою очередь, значит, что и, следовательно, само также неположительно: .
И ошибка здесь состоит в том, что мы вносим под корень неположительное число : четвёртая степень превращает его в неотрицательное и получается неверный результат — слева заведомый минус, а справа уже плюс. А вносить под корень чётной степени мы имеем право только неотрицательные числа или выражения. А минус, если есть, оставлять перед корнем.) Как же нам выделить неотрицательный множитель в числе , зная, что оно само стопудово отрицательное? Да точно так же! Поставить минус.) А чтобы ничего не поменялось, скомпенсировать его ещё одним минусом. Вот так:
И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:
Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах.
Разбираемся со следующим важным приёмом в работе с корнями — избавлением от иррациональности.
Избавление от иррациональности в дробях
Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью. В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.
Допустим, нам дана вот такая дробь:
Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя , т.е. . Вот и домножаем числитель и знаменатель дроби на
Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)
Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, обозначают по-разному: где-то , а где-то . Вопрос — что правильно? Ответ: всё правильно! ) Если догадаться, что – это просто результат освобождения от иррациональности в знаменателе дроби . 🙂
Зачем нам освобождаться от иррациональности в дробях? Какая разница — в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное. А уж про деление в столбик вообще умолчу.)
Следующий пример только подтвердит мои слова.
Освободиться от иррациональности в знаменателе дроби:
Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение , то в знаменателе получится квадрат суммы. Сумма квадратов первого и второго чисел дадут нам просто числа безо всяких корней, что очень радует. Однако… всплывёт удвоенное произведение первого числа на второе, где корень из трёх всё равно останется. Не канает. Как быть? Вспомнить другую замечательную формулу сокращённого умножения! Где никаких удвоенных произведений, а только квадраты:
Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов, ещё называют сопряжённым выражением. В нашем примере сопряжённым выражением будет служить разность . Вот и домножаем на эту разность числитель и знаменатель:
Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез — вообще дробь исчезла! 🙂 Даже с калькулятором отнять корень из трёх от тройки проще, чем считать дробь с корнем в знаменателе. Ещё пример.
Освободиться от иррациональности в знаменателе дроби:
Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят — не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический. Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе — сумма . Как нам добиться возведения корня в куб? Домножить на неполный квадрат разности! Значит, применять будем формулу суммы кубов. Вот эту:
В качестве a у нас тройка, а в качестве b — корень кубический из пяти:
И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!
Попробуйте просто сложить эти три дроби! Без ошибок! 🙂 Один общий знаменатель чего стоит. А что, если попробовать освободиться от иррациональности в знаменателе каждой дроби? Что ж, пробуем:
Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:
Просто и элегантно. И без долгих и утомительных вычислений. 🙂
Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе. Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)
Более сложные примеры
Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак — вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.
Вычислить:
Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует. Значит, надо что-то делать с подкоренными выражениями: у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача — его расшифровать.) Такая расшифровка красиво делается через систему уравнений. Сейчас всё сами увидите.)
Итак, под первым корнем у нас вот такое выражение:
А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:
Всё верно.) Но… Откуда я взял это выражение ? С неба?
Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. 🙂 Что такое 54? Это сумма квадратов первого и второго чисел. Причём, обратите внимание, уже без корней! А корень остаётся в удвоенном произведении, которое в нашем случае равно . Поэтому распутывание подобных примеров начинается с поиска удвоенного произведения. Если распутывать обычным подбором. И, кстати, о знаках. Тут всё просто. Если перед удвоенным плюс, то квадрат суммы. Если минус, то разности.) У нас плюс — значит, квадрат суммы.) А теперь — обещанный аналитический способ расшифровки. Через систему.)
Итак, у нас под корнем явно тусуется выражение (a+b) 2 , и наша задача — найти a и b. В нашем случае сумма квадратов даёт 54. Вот и пишем:
Теперь удвоенное произведение. Оно у нас . Так и записываем:
Получили вот такую системку:
Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:
Решим первое уравнение:
Получили биквадратное уравнение относительно a . Считаем дискриминант:
Получили аж четыре возможных значения a . Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения , то получим четыре решения нашей системы. Вот они:
И тут вопрос — а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, , а .
Итого получили под корнем квадрат вот такой суммы:
Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.
Итак, теперь у нас вот такой корень: .
Размышляем так: «Под корнем — скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус — значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54 . Но какие это квадраты? 1 и 53 ? 49 и 5 ? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши можно расписать как . Раз произведение удвоенное, то двойку сразу отметаем. Тогда кандидатами на роль a и b остаются 7 и . А вдруг, это 14 и /2 ? Не исключено. Но начинаем-то всегда с простого!» Итак, пусть , а . Проверим их на сумму квадратов:
Получилось! Значит, наше подкоренное выражение — это на самом деле квадрат разности:
Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями — полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:
А теперь разберём ещё более нестандартное задание на корни.)
Докажите, что число A – целое, если .
Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство
как уравнение относительно A. Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы:
Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:
Отдельно сосчитаем разность квадратов под корнями:
Отлично! Значит, всё наше равенство ещё сильнее упростится:
А теперь делаем финт ушами — заменяем сумму корней в скобках на A (согласно условию примера!).
Получаем кубическое уравнение или .
Здесь как раз тот случай, когда один из корней легко угадывается — это . Значит, наш многочлен можно разложить как
Как разложить? Либо по схеме Горнера, либо делением «уголком» на скобку (A-4), либо даже группировкой (если представить -3A как -16A+13A). Объяснять подробно деление уголком или схему Горнера в теме про корни — уже совсем отклоняться от курса.) Кто в теме — и так поймёт.
А теперь легко заметить, что квадратный трёхчлен во вторых скобках имеет отрицательный дискриминант, а значит, наше уравнение имеет единственный действительный корень . И поэтому наша страшная сумма корней в действительности равна просто 4. То есть, явно целому числу. Что и требовалось доказать.)
А теперь — поупрощаем некоторые дробные выражения с корнями. От простого — к сложному. Здесь всё точно так же, как и с многочленами. Только в применении к корням.) Я же говорил, что действия с корнями ничем не отличаются от таковых с буквами. И к корням с таким же успехом применима вся алгебра седьмого класса — формулы сокращённого умножения, разложение на множители, приведение подобных и т.п.
Например, такое задание.
Пример явно намекает на применение формулы разности квадратов:
Спрашивается, а где же здесь квадраты? Сплошные корни… Сейчас покажу. 🙂
Берём числитель нашей дробушки: .
Что такое ? По свойству корня из степени, мы можем вынести квадрат наружу. Вот так:
Хорошо, а из как квадрат сделать? Не вопрос! По пятому свойству, домножаем на двойку показатели корня и подкоренного выражения:
По такой технологии, между прочим, можно совершенно любой корень превратить в совершенно любую степень. Какую хотим. 🙂 Как, например, представить в виде 4-й степени? Нет проблем:
Хотим из степеней корни делаем, хотим — наоборот, степени из корней. Что хотим, то и творим. Математика, однако! 🙂
Итак, весь наш числитель можно представить как разность квадратов:
А дальше никаких проблем — раскладываем числитель на множители и сокращаем:
Действуем аналогично. Раскладываем на множители и сокращаем. 🙂 В числителе применяем группировку. Например, вот такую:
А в знаменателе просто выносим общий множитель :
Подставляем всё в нашу дробь и сокращаем:
Как видим, разложение на множители очень популярно в теме с корнями. Очень! И особенно — формула разности квадратов. Именно поэтому формулы сокращённого умножения так важно знать и уметь применять. 🙂
Ну и на десерт распутаем что-нибудь навороченное. )
Чтобы не запутаться и не наляпать ошибок, будем действовать по порядку. При взгляде на любой пример всегда задаём сами себе вопрос: «Что в примере мне больше всего не нравится?» В данном примере большинство скажет: «Числитель первой дроби!» Верно! Вот и упростим его отдельно: остальная часть примера от этого никак не пострадает.) Итак,
Вместо знака деления удобно использовать черту дроби. Вот так:
Сначала упростим дробь. Как? Попробуем сократить.) Для этого, ясное дело, надо разложить на множители числитель и знаменатель, да… Берём отдельно числитель . Можно его разложить на множители? Можно! Для этого из a надо сделать корень. Вот так:
Если теперь подставить вместо a выражение , то всплывёт общий множитель. 🙂
Со знаменателем полная аналогия:
Теперь от упрощённой дроби отнимаем единичку. Как? Делаем из единички дробь и — вперёд!
Следующим пунктом идёт деление полученной дроби на выражение . Это означает, что оно пойдёт у нас в знаменатель:
Уфф… Дальше… Отнимаем от полученного выражения дробь :
И, наконец, последнее усилие. Возводим результат в куб:
Ну как, всё понятно? Тогда — вперёд, набиваем руку и делаем примеры!
Вынести множители за знак корня: , , где .
Внести множители под знак корня: , .
Освободиться от иррациональности в знаменателе дробей:
, .
Вычислить:
Доказать, что A – целое число, если .
Ответы (пока) давать не буду — иначе неинтересно. 🙂 До встречи и успехов!
- Преобразование иррациональных выражений в математике с примерами решения и образцами выполнения
- Арифметический корень и его свойства
- Свойства арифметических корней
- Дополнительные замечания о свойствах радикалов
- Обобщение понятия о показателе степени
- Степень с положительным дробным показателем
- Степень с нулевым показателем
- Степень с отрицательным рациональным показателем
- Тождественные преобразования иррациональных выражении
- Тождественные преобразования иррациональных выражений
- Иррациональные выражения (выражения с корнями) и их преобразование
- Что такое иррациональные выражения?
- Основные виды преобразований иррациональных выражений
- Преобразование подкоренного выражения
- Использование свойств корней
- Внесение множителя под знак корня
- Вынесение множителя из-под знака корня
- Преобразование дробей, содержащих корни
- Избавление от иррациональности в знаменателе
- Переход от корней к степеням
- 💡 Видео
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Преобразование иррациональных выражений в математике с примерами решения и образцами выполнения
Иррациональными выражениями называют выражения, содержащие операцию извлечения корня. Другими словами, иррациональные выражения – это выражения с радикалами (выражения, содержащие в своей записи знаки корня).
Видео:Преобразование иррациональных выражений. 11 класс.Скачать
Арифметический корень и его свойства
Определение арифметического корня: Пусть а—действительное число, a n — натуральное число, большее единицы. Поставим перед собой задачу: найти число х, такое, чтобы выполнялось равенство
Сначала рассмотрим конкретные примеры.
тогда равенство (1) принимает вид: откуда
тогда равенство (1) принимает вид: откуда
тогда равенство (1) принимает вид: что не выполняется ни при каком действительном значении х;
тогда равенство (1) принимает вид: откуда
Эти примеры показывают, что поставленная задача при четном имеет два решения, при нечетном n —одно решение, при четном ни одного решения.
Если задача имеет решение, т. е. равенство выполняется при некоторых значениях х, то эти значения x называются корнями n-й степени из числа а итак корень n-й степени из числа а—это такое число, n-я степень которого равна а.
Из рассмотренных выше примеров следует, что существуют два корня второй степени из числа 16 — это числа 4 и -4; существует один корень третьей степени из числа 27 —это число 3; не существует корня четвертой степени из числа —16; существует один корень пятой степени из числа —32—это число —2.
Рассмотрим случай отыскания корня n-й степени из неотрицательного числа. Можно доказать, что если и то существует и только одно неотрицательное число х, такое, что (доказательство проводится в курсе высшей математики; представление об этом доказательстве будет дано в следующей главе).
Арифметическим корнем n-й степени из положительного числа а называется такое положительное число, n-я степень которого равна а.
Для арифметического корня n-й степени из числа а принято обозначение Число а называется подкоренным числом или подкоренным выражением, n- показатель корня. Если то обычно не пишут а пишут просто и называют это выражение квадратным корнем. Часто вместо термина «корень» используется термин «радикал».
Согласно определению запись где означает, во-первых, что и, во-вторых, что т. е. Например,
Полагают также
Обратим внимание читателя на то, что, например,
Свойства арифметических корней
Условимся прежде всего о следующем: все переменные, которые встречаются в формулировках свойств и в примерах, рассматриваемых в настоящем и следующем пунктах, будем считать принимающими только неотрицательные значения. Кроме того, мы рассматриваем только арифметические корни, а потому каждый раз специально подчеркивать это не будем. Значит, мы будем писать: «корень n-й степени из неотрицательного числа», а читатель должен понимать, что речь идет об арифметическом корне.
1°. Корень n-й степени из произведения двух неотрицательных чисел равен произведению корней из этих чисел, т. е.
Доказательство:
Мы знаем, что это такое неотрицательное число, которое, будучи возведено в степень n, дает подкоренное выражение ab. Ясно, что — неотрицательное число. Значит, если мы покажем, что то это и будет обозначать, что
Итак, рассмотрим выражение По свойству 1° степени с натуральным показателем (стр. 45) имеем
Так как то получаем
Пример. Вычислить
Решение. По свойству 1° имеем
2°. Корень n-й степени из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, деленному на корень из знаменателя, т. е.
Пример:
Доказательство этого свойства аналогично доказательству свойства 1°.
3°. Чтобы возвести корень n-й степени в натуральную степень k, достаточно возвести в эту степень подкоренное выражение и из полученного результата извлечь корень n-й степени, т. е.
Пример:
Доказательство:
По определению корня это такое неотрицательное число, которое, будучи возведено в n-ю степень, дает Поэтому нам достаточно показать, что
По свойству 3° степени с натуральным показателем (стр. 45) имеем
Так как то получаем т. е.
4°. Чтобы извлечь корень из корня, нужно перемножить показатели корней, а подкоренное выражение оставить без изменения, т. е.
Пример:
Доказательство:
значит,
5°. Если показатель корня и показатель степени подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т. е.
Пример:
Доказательство:
По определению корня это такое неотрицательное число, которое, будучи возведено в степень mn дает Значит, достаточно показать, что
По свойству 3° степени с натуральным показателем имеем
Значит,
Примеры:
Извлечь корень из произведения:
Решение:
а) Применив свойство 1° арифметических корней, получим:
Напомним, что мы в начале рассматриваемого пункта условились считать все переменные принимающими только неотрицательные значения. Не будь этого соглашения, мы не имели бы права писать так как при это неверно; то же относится и к равенству
2. Извлечь корень из дроби
Решение:
а) Обратим смешанное число в неправильную дробь: свойству 2° получаем
б) воспользовавшись свойствами 2° и 1°, получим
3.Вынести множитель из-под знака корня:
Решение:
а) Представим подкоренное выражение в виде и применим к полученному произведению свойство 1° арифметических дробей:
Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования —упрощение подкоренного выражения;
В некоторых случаях оказывается полезным преобразование, в определенном смысле обратное только что рассмотренному, а именно: внесение множителя под знак корня. Пусть, например, нужно выяснить, какое из чисел больше: или Рассмотрим число Внесем множитель 2 под знак корня —это достигается с помощью следующего преобразования:
Сделаем аналогичное преобразование числа
Так как
4.Ввести множитель под знак корня:
Решение:
В рассмотренных примерах мы пользовались только определением корня и свойствами 1° и 2°. Рассмотрим теперь примеры использования свойств 3° и 4°.
Решение:
а) По свойству 3° имеем
Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак корня. Имеем:
6.Выполнить действия:
Решение:
а) По свойству 4° арифметических корней имеем
б) преобразуем выражение внеся множитель под знак корня:
Далее имеем
Рассмотрим, наконец, примеры, в которых используется свойство 5°.
Решение:
а) По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом примере разделить указанные показатели на 3, то получим
8.Упростить выражения:
Решение:
а) Из свойства 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения, из полученного результата извлечь корень той же степени; значит,
в) выше мы видели, как перемножить корни одной и той же степени. В данном же примере требуется перемножить корни с различными показателями. Значит, прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5°, можно показатель корня и показатель степени подкоренного выражения умножить на одно и то же натуральное число; поэтому
А теперь разделим в полученном результате показатели корня и подкоренного выражения на 3:
г) приведем радикалы к одному показателю. Для этого, очевидно, нужно найти наименьшее общее кратное чисел 10 и 15; Значит, нам нужно показатели корня и степени подкоренного выражения для первого из перемножаемых радикалов умножить на 3, а для второго—на 2; получим
д) НОК чисел 4, 6, 10 равно 60, поэтому приведем все радикалы к показателю 60:
Тождество
Ответим на такой вопрос: если переменная а принимает как неотрицательные, так и отрицательные значения, то чему равен
Если Но значит можно считать, что при справедливо равенство
Если и речь, следовательно, идет об арифметическом корне второй степени из положительного числа Здесь могут представиться два случая: Если например, Если же то например,
Итак, можно записать, что
Но точно так же определяется модуль действительного числа
Таким образом, Например,
Вообще, если n — четное число, т.е. то
Так, если в рассмотренных примерах 1, а) и б) снять требование неотрицательности значений переменных, то решение примера выглядело бы следующим образом:
Дополнительные замечания о свойствах радикалов
Рассмотренные пять свойств арифметических корней, т. е. пять свойств радикалов безоговорочно верны для неотрицательных подкоренных выражений. Но при решении примеров на действия с радикалами нужно иметь в виду возможность отрицательных значений переменных, содержащихся под знаками радикалов.
Пусть а и b — отрицательные числа, а n — четное число. В этом случае написать нельзя, так как правая часть такого «равенства» не имеет смысла (например, нельзя написать Здесь можно рассуждать так: а и b—отрицательные числа, следовательно, Но тогда значит,
Так как то, применив свойство 1° арифметических корней, получим
Итак, если n —четное число, а числа а и b имеют одинаковые знаки, то
Очень внимательно следует относиться к свойству 5°. Пусть, например, нужно упростить выражение Если разделить показатели корня и подкоренного выражения на 2, то придем к выражению не имеющему смысла, так как под корнем четной степени содержится отрицательное число. Верное равенство в данном случае выглядит так:
В самом деле, и, следовательно,
Видео:Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать
Обобщение понятия о показателе степени
Постановка задачи: Напомним определение степени с натуральным показателем и ее свойства.
Определение
Основные свойства степени
В последующих пунктах речь пойдет об определениях степени с любым рациональным показателем.
Сначала мы определим степень с положительным дробным показателем, далее степень с нулевым показателем и затем степень с отрицательным рациональным показателем. Ясно, что ни на один из этих случаев не переносится данное выше определение, например нельзя определить как произведение числа а самого на себя 3/5 раза. Поэтому каждый раз придется вводить новое определение. При выборе нового определения мы будем руководствоваться требованием, чтобы на новый случай степени распространялись свойства, аналогичные свойствам 1°—5°, перечисленным выше.
Степень с положительным дробным показателем
Пусть Надо определить так, чтобы выполнялось, например, равенство т. е. чтобы при возведении степени в степень показатели перемножались. Но это равенство возможно лишь в случае, когда Возникает вполне естественная мысль: определить Но будет ли такое определение удачным, т. е. будут ли при таком определении выполняться свойства, аналогичные свойствам 1°—5°? Проверим это.
Доказательство. Согласно предложенному определению степени с положительным дробным показателем имеем: Значит, Воспользовавшись свойствами радикалов, приведем радикалы к одному показателю и выполним умножение:
Далее имеем значит,
Доказательство:
Воспользуемся свойствами возведения радикала в степень и извлечения корня из корня:
Аналогично можно показать, что будут выполняться свойства:
Итак, при предложенном определении степени с положительным дробным показателем основные свойства степени выполнены. Значит, определение удачно и его можно принять.
Определение:
Если
Например, так как так как
На практике при выполнении действий над радикалами довольно часто переходят к дробным показателям.
Примеры:
Выполнить умножение:
Решение:
2.Разложить на множители
Решение:
Степень с нулевым показателем
При выборе определения мы также будем руководствоваться требованием, чтобы на случай степени с нулевым показателем распространялись свойства 1°—5° степени с натуральным показателем (впрочем, теперь мы уже вправе говорить о распространении свойств степени с положительным рациональным показателем). В частности, при умножении степеней с одинаковым основанием показатели должны складываться, т. е. должно выполняться равенство
так как (n—натуральное число). Это равенство при возможно лишь в случае, когда Поэтому возникает мысль определить как 1. Нетрудно проверить, что при таком определении выполняются свойства, аналогичные свойствам 1° — 5° степени с натуральным показателем, значит, определение можно принять.
Определение:
Если
Например,
Степень с отрицательным рациональным показателем
Пусть положительное рациональное число. Надо определить так, чтобы, например, выполнялось равенство
Так как то равенство (1) возможно лишь, если определить Нетрудно показать , что при таком определении будут выполняться свойства, аналогичные свойствам 1°—5°.
Покажем, например, что
Остальные свойства проверяются аналогично.
Определение:
Если
Например,
Замечание:
Если r—целое число, то полагают а и в случае, когда а Степень с любым рациональным показателем
Мы определили понятие степени с любым рациональным показателем. Эта степень обладает следующими свойствами (мы полагаем а > 0, b > 0, — произвольные рациональные числа):
Заметим, что после введения нулевого и отрицательного показателей мы имеем право в свойстве 2° не делать оговорки, что
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Тождественные преобразования иррациональных выражении
Тождественно равные выражения на данном множестве: По определению (стр. 47) тождественно равными выражениями называются такие, у которых все соответственные значения равны. Согласно этому определению выражения и а не являются тождественно равными. Действительно, пусть тогда т. е. равенство не является тождеством.
Однако на множестве всех неотрицательных чисел все соответственные значения выражений и а равны и равенство называют тождеством на этом множестве.
Определение:
Два выражения называются тождественно равными на данном множестве, если на этом множестве они имеют смысл и все их соответственные значения равны.
Например, выражения тождественно равны на множестве Легко видеть, что где TV, — множество, на котором определено выражение множество, на котором определено выражение
Тождественные преобразования иррациональных выражений
Выражение с переменными называется иррациональным, если оно содержит извлечение корня из переменной или возведение переменной в дробную степень.
Тождественные преобразования иррациональных выражений выполняются, как правило, на множестве неотрицательных чисел. Это вытекает из введенных ранее определений. Например, сократим дробь При выражение а — 4 можно представить в виде разности квадратов выражений а затем сократить дробь:
Проделанное нами тождественное преобразование выполнено на множестве неотрицательных чисел, т. е. при В дальнейшем мы будем это подразумевать и специально не оговаривать.
Примеры:
Решение:
Здесь целесообразно применить прием избавления от иррациональности в знаменателе. Для этого умножим числитель и знаменатель первой дроби на (это выражение называется сопряженным для
Аналогично поступим со второй дробью (теперь выражением, сопряженным для знаменателя, является
Для того чтобы избавиться от иррациональности в знаменателе третьей дроби, умножим числитель и знаменатель этой дроби на
Таким образом, имеем
Решение:
Прежде всего подумаем, нельзя ли сократить первую дробь. Выражение, стоящее в числителе, можно преобразовать так:
Таким образом, последовательное сокращение дробей при тождественных преобразованиях иррациональных выражений обеспечивает достаточную простоту решения. Проиллюстрируем эту мысль еще на одном примере.
Решение:
Попытка привести дроби, стоящие в числителе, к общему знаменателю без предварительных сокращений этих дробей приведет решение к неоправданному усложнению. Поэтому в первую очередь надо сократить эти дроби, а затем произвести указанные действия:
Идея сокращения дробей лежит и в основе тождественных преобразований выражений, содержащих степени с рациональными показателями.
Решение:
Подчеркнем, что проделанные нами в примере 4 тождественные преобразования выполнены на множестве положительных чисел, т. е. при
Иногда множество, на котором выполняются преобразования, имеет более сложную природу. Поясним это на следующем примере.
Решение:
Рассмотрим выражение Оно преобразуется к виду Замечаем, что Итак, Аналогично
После этих наблюдений мы можем заданное выражение переписать в виде
Выше мы отмечали, что поэтому
По смыслу примера имеем (заданное выражение содержит Значит, а потому Таким образом, мы приходим к выражению
Теперь нужно рассмотреть два случая: В первом случае а во втором
Ответ:
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать
Иррациональные выражения (выражения с корнями) и их преобразование
Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.
Видео:Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать
Что такое иррациональные выражения?
При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.
Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.
Основываясь на данном определении, мы имеем, что x — 1 , 8 3 · 3 6 — 1 2 · 3 , 7 — 4 · 3 · ( 2 + 3 ) , 4 · a 2 d 5 : d 9 2 · a 3 5 — это все выражения иррационального типа.
При рассмотрении выражения x · x — 7 · x + 7 x + 3 2 · x — 8 3 получаем, что выражение является рациональным. К рациональным выражениям относят многочлены и алгебраические дроби. Иррациональные включают в себя работу с логарифмическими выражениями или подкоренными выражениями.
Видео:8 класс, 38 урок, Иррациональные уравненияСкачать
Основные виды преобразований иррациональных выражений
При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.
Преобразовать выражение 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 .
Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что
81 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3
Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим
9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 — 2 + 1 + 3 3 + 4 · 3 3 — 2 · 3 3 = = 8 + 3 · 3 3
Ответ: 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = 8 + 3 · 3 3
Представить выражение x + 3 5 2 — 2 · x + 3 5 + 1 — 9 в виде произведения двух иррациональных с использованием формул сокращенного умножения.
x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 1 2 — 9
Представляем 9 в виде 3 2 , причем применим формулу разности квадратов:
x + 3 5 — 1 2 — 9 = x + 3 5 — 1 2 — 3 2 = = x + 3 5 — 1 — 3 · x + 3 5 — 1 + 3 = = x + 3 5 — 4 · x + 3 5 + 2
Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.
x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 4 · x + 3 5 + 2
Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.
Видео:Иррациональные уравнения и их системы. 11 класс.Скачать
Преобразование подкоренного выражения
Важно то, что выражение, находящееся под знаком корня, можно заменить на тождественно равное ему. Данное утверждение дает возможность работать с подкоренным выражением. К примеру, 1 + 6 можно заменить на 7 или 2 · a 5 4 — 6 на 2 · a 4 · a 4 — 6 . Они тождественно равные, поэтому замена имеет смысл.
Когда не существует а 1 , отличное от a , где справедливо неравенство вида a n = a 1 n , тогда такое равенство возможно только при а = а 1 . Значения таких выражений равны с любыми значениями переменных.
Видео:Преобразование иррациональных выражений. Практическая часть. 11 класс.Скачать
Использование свойств корней
Свойства корней применяют для упрощения выражений. Чтобы применить свойство a · b = a · b , где a ≥ 0 , b ≥ 0 , тогда из иррационального вида 1 + 3 · 12 можно стать тождественно равным 1 + 3 · 12 . Свойство . . . a n k n 2 n 1 = a n 1 · n 2 · , . . . , · n k , где a ≥ 0 говорит о том, что x 2 + 4 4 3 можно записать в форме x 2 + 4 24 .
Имеются некоторые нюансы при преобразовании подкоренных выражений. Если имеется выражение, то — 7 — 81 4 = — 7 4 — 81 4 записать не можем, так как формула a b n = a n b n служит только для неотрицательного a и положительного b . Если свойство применить правильно, тогда получится выражение вида 7 4 81 4 .
Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.
Видео:Как решать иррациональные уравнения. Методы решения иррациональных уравнений. (часть 1).Скачать
Внесение множителя под знак корня
Внести под знак корня – значит заменить выражение B · C n , а B и C являются некоторыми числами или выражениями, где n – натуральное число, которое больше 1 , равным выражением, которое имеет вид B n · C n или — B n · C n .
Если упростить выражение вида 2 · x 3 , то после внесения под корень, получаем, что 2 3 · x 3 . Такие преобразования возможны только после подробного изучения правил внесения множителя под знак корня.
Видео:Иррациональные выражения в ЕГЭ✅Скачать
Вынесение множителя из-под знака корня
Если имеется выражение вида B n · C n , тогда его приводят к виду B · C n , где имеется нечетные n , которые принимают вид B · C n с четными n , В и C являются некоторыми числами и выражениями.
То есть, если брать иррациональное выражение вида 2 3 · x 3 , вынести множитель из-под корня, тогда получим выражение 2 · x 3 . Или x + 1 2 · 7 даст в результате выражение вида x + 1 · 7 , которое имеет еще одну запись в виде x + 1 · 7 .
Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.
Видео:Как упрощать выражение с радикалами?Скачать
Преобразование дробей, содержащих корни
Иррациональное выражение может быть как натуральным числом, так и в виде дроби. Для преобразования дробных выражений большое внимание обращают на его знаменатель. Если взять дробь вида ( 2 + 3 ) · x 4 x 2 + 5 3 , то числитель примет вид 5 · x 4 , а, использовав свойства корней, получим, что знаменатель станет x 2 + 5 6 . Исходную дробь можно будет записать в виде 5 · x 4 x 2 + 5 6 .
Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что
— x + 2 · x — 3 · x 2 + 7 4 = x + 2 · x — ( — 3 · x 2 + 7 4 ) = x + 2 · x 3 · x 2 — 7 4
Сокращение дроби чаще всего используется при упрощении. Получаем, что
3 · x + 4 3 — 1 · x x + 4 3 — 1 3 сокращаем на x + 4 3 — 1 . Получим выражение 3 · x x + 4 3 — 1 2 .
Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.
Если взять дробь вида 2 · x — y x + y , то необходимо вводить новые переменные u = x и v = x , тогда заданное выражение поменяет вид и станет 2 · u 2 — v 2 u + v . Числитель следует разложить на многочлены по формуле, тогда получим, что
2 · u 2 — v 2 u + v = 2 · ( u — v ) · u + v u + v = 2 · u — v . После выполнения обратной замены придем к виду 2 · x — y , которое равно исходному.
Допускается приведение к новому знаменателю, тогда необходимо числитель умножать на дополнительный множитель. Если взять дробь вида x 3 — 1 0 , 5 · x , тогда приведем к знаменателю x . для этого нужно умножить числитель и знаменатель на выражение 2 · x , тогда получаем выражение x 3 — 1 0 , 5 · x = 2 · x · x 3 — 1 0 , 5 · x · 2 · x = 2 · x · x 3 — 1 x .
Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.
Видео:11 класс, 7 урок, Преобразование выражений содержащих радикалыСкачать
Избавление от иррациональности в знаменателе
Когда выражение избавляется от корня в знаменателе путем преобразования, то это называется избавлением от иррациональности. Рассмотрим на примере дроби вида x 3 3 . После избавления от иррациональности получаем новую дробь вида 9 3 · x 3 .
Видео:Система иррациональных уравнений #1Скачать
Переход от корней к степеням
Переходы от корней к степеням необходимы для быстрого преобразования иррациональных выражений. Если рассмотреть равенство a m n = a m n , то видно, что его использование возможно, когда a является положительным числом, m –целым числом, а n – натуральным. Если рассматривать выражение 5 — 2 3 , то иначе имеем право записать его как 5 — 2 3 . Эти выражения равнозначны.
Когда под корнем имеется отрицательное число или число с переменными, тогда формула a m n = a m n не всегда применима. Если нужно заменить такие корни ( — 8 ) 3 5 и ( — 16 ) 2 4 степенями, тогда получаем, что — 8 3 5 и — 16 2 4 по формуле a m n = a m n не работаем с отрицательными а. для того, чтобы подробно разобрать тему подкоренных выражений и их упрощений, необходимо изучать статью о переходе от корней к степеням и обратно. Следует помнить о том, что формула a m n = a m n применима не для всех выражений такого вида. Избавление от иррациональности способствует дальнейшему упрощению выражения, его преобразованию и решению.
💡 Видео
Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Уравнения с корнем. Иррациональные уравнения #shortsСкачать
Преобразование иррациональных выражений. Практическая часть. 11 класс.Скачать
8 класс, 4 урок, Преобразование алгебраических выраженийСкачать
Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Преобразование выражений, содержащих квадратные корни. Алгебра, 8 классСкачать