Правило весов при решении уравнений

Правило весов при решении уравнений

Запись двух равных чисел будет выглядеть, например, так:

а запись двух равных числовых выражений может быть записана:

Про равенство можно сказать верно оно или нет. Например, 4 + 3 = 10 — 3 — верное равенство, 11 — 2 = 5 + 1 — неверное.

Можно заметить, что если в равенстве поменять местами правую и левую части, то оно не изменится. Действительно, если 2 + 5 = 9 — 2 — это верное равенство, то и 9 — 2 = 2 + 5 — тоже верное равенство. Это свойство равенств называется симметричностью.

Если в равенстве присутствует неизвестная величина, то его называют уравнением.

Например, самое простое уравнение может выглядеть так:

или чуть сложнее:

или еще немного сложнее:

2x — 18x + 6 — 3 = 7 — 4x + 2 + 15x.

Возникает вопрос при каких значениях неизвестной, наше уравнение превратится в верное равенство? Сколько таких значений и как их найти?

Значения неизвестной, при которых уравнение превращается в верное равенство называются корнями уравнения, а поиск этих значений — процессом решения уравнения. Например уравнение:

Превращается в верное равенство при х = 2:

Значит это уравнение имеет один корень х = 2. Есть уравнения, которые имеют два корня, есть, которые имеют 3 или более корней. Есть уравнения, которые имеют бесконечное количество корней. Например уравнение:

10x + 7 — 2 = 12x — 2x + 5

Будет верно при любом x. Также уравнение может совсем не иметь корней:

10x + 7 — 1 = 12x — 2x + 5

Легко убедиться, что какое бы x мы не взяли это уравнение не превратится в верное равенство.

Давайте представим себе весы, на которых мы будем сравнивать различные предметы (точнее их веса). Будем говорить, что весы находятся в равновесии, если чаши весов находятся на одном уровне. Вот эти весы в равновесии:

Правило весов при решении уравненийРис.1 Весы в равновесии

Правило весов при решении уравненийРис.2 Весы не в равновесии

Если весы находятся в равновесии, это значит что вес содержимого левой чаши равен весу содержимого правой чаши. Посадим на обе чаши по одинаковому слону и получим весы в равновесии:

Можно сказать, что у нас есть равенство: Мслона = Мслона.

Правило весов при решении уравненийРис.3 Весы в равновесии

А если на левой чаше сидит слон, а на правой мышка, то равновесия нет:

Правило весов при решении уравненийРис.4 Весы не в равновесии

Добавим на правую чашу миллион мышек и получим другое неравенство:

Правило весов при решении уравненийРис.5 Весы не в равновесии

Уберем лишних мышек чтобы привести весы в равновесие:

Правило весов при решении уравненийРис.6 Весы в равновесии

Теперь мы можем сказать что вес слона равен весу мышек, то есть мы получили равенство: Мслона = Ммышек.

Отметим еще раз аналогию, которую мы проводим: если весы находятся в равновесии, можно говорить о равенстве содержимого левой и правой чаши.

Что произойдет если к весам, находящимся в равновесии, на левую чашу что-нибудь добавить? Очевидно, левая чаша перевесит правую:

Правило весов при решении уравненийРис.7 Весы в равновесии

Вместе с потерей равновесия пропадает и равенство правой и левой чаши. Чтобы восстановить равновесие надо добавить такой же банан на правую чашу:

Правило весов при решении уравненийРис.8 Весы в равновесии

Равновесие восстановлено! Из вышепроделанного можно сделать вывод, что если к чашам весов, которые находятся в равновесии добавить одинаковый груз, то равновесие не изменится! Вспоминаем нашу аналогию и получаем важное свойство равенства:

1. Если к обеим частям верного равенства добавить одинаковое число или выражение, то равенство останется верным!

7 = 7 — равенство верно.

Добавим к обеим частям 33:

7 + 33 = 7 + 33 — равенство верно.

3 + 4 = 10 -3 — равенство верно.

Добавим к обеим частям 15:

3 + 4 + 15 = 10 — 3 + 15 — равенство верно.

Следующие свойства равенства можно получить аналогичными рассуждениями на примере весов (проведите их самостоятельно):

2. Если от обеих частей верного равенства отнять одинаковое число или выражение, то равенство останется верным

3. Если обе части равенства умножить на одно и тоже число или выражение, то равенство останется верным.

4. Если обе части равенства разделить на одно и тоже число или выражение не равное нулю, то равенство останется верным.

Итак, метод “весов” помог нам найти эти важные свойства равенства. Давайте применим их для решения уравнений. Возьмем для примера следующее уравнение:

Для начала вспомним, что решить уравнение — это значит найти все его корни, то есть все значения x, при которых уравнение превращается в верное равенство или доказать, что таких корней нет. Процесс решение уравнения — это последовательность преобразований исходного уравнения, в результате которой получается уравнение вида x = значение. Т.е. решение нашего уравнения должно выглядеть так:

Полученное значение x и будет корнем уравнения. Еще раз, наша цель: путем преобразований исходного уравнения получить уравнение: x = число.

Заметим, что чтобы достичь нашей цели необходимо чтобы в правой части уравнения не осталось членов с неизвестным, а в левой свободных членов (чисел без x). Действительно, в выражении x = число, слева от знака равно нет свободных членов, а справа нет членов с неизвестным.

Для начала давайте избавимся от слагаемых с неизвестным в правой части уравнения. Для этого воспользуемся свойством, которое мы получили из метода весов, а именно: если отнять одно и тоже значение от обеих частей равенства, то равенство останется верным. В правой части уравнения присутствует член 3x, отнимем его от обеих частей уравнения:

5x + 7 — 3x = 3x + 17 — 3x

Приведем подобные члены:

Теперь избавимся от свободного члена в левой части уравнения путем вычитания из обеих частей числа 7:

2x + 7 — 7 = 17 — 7

Приведем подобные слагаемые:

Чтобы найти x, разделим обе части уравнения на 2:

Корень нашего уравнения 5. Убедимся в этом подставив его в исходное уравнение:

32 = 32 — верное равенство.

5x + 7x — 8x + 4 -6 = 15x — 17x + 4x — 5 -8

Видео:Правило “весов”. Ещё один способ нахождения корня уравнения и не толькоСкачать

Правило “весов”. Ещё один способ нахождения корня уравнения и не только

Метод весов

Разделы: Математика

Тип урока: урок изучения нового материала.

Формы работы: индивидуальная, фронтальная, парная.

Основные цели: показать еще один способ решения уравнений.

— сформировать представление о методе “весов”, отрабатывать вычислительные навыки;

— развивать логическое мышление, умения анализировать, сравнивать, обобщать, делать выводы, развивать внимание, математическую речь;

— воспитание коммуникативной культуры, умения работать в паре, познавательного интереса к предмету.

Цель для учителя: создать условия для усвоения учащимися данной темы.

1. Учебник “Математика 5 класс”. Г.В.Дорофеев, Л.Г. Петерсон.

2. Цветные карточки с цифрами. (Рисунок №1)

Правило весов при решении уравнений

3. Круги с числами.

4. Макет весов с подвижными гирями.

5. Рисунки логических весов со съемными квадратиками и звездочками.

6. Карточки с ритмическими рисунками.

7. Рисунки квадрата и круга.

8. Эталон к самостоятельной работе.

9. Карточка для этапа рефлексии.

10. Карточка с домашней творческой задачей по теме.

1. Организационный момент

Приветствие, проверка подготовленности к учебному занятию, организация внимания детей, создание благоприятного психологического настроя на работу.

Дидактическая задача этапа: подготовить учащихся к работе на уроке.

Здравствуйте, ребята, садитесь. Подпишем число, классная работа и оставим место для темы урока. Тему вы сами определите чуть позже.

Девиз нашего урока:

Логика есть попытка понять действительный мир
по известной созданной нами схеме сущего.
Фридрих Ницше

2. Устная работа

1) Устный блиц опрос.

  • У стола четыре угла. Один отпилили. Сколько осталось?
  • Какая третья буква в слове “дуб”?
  • Сколько месяцев в году?
  • Что мы слышим в начале урока? (Букву “у”)
  • Чему равно произведение всех цифр?

2) Упражнение на развитие памяти.

Учащимся предлагаются цветные карточки (рисунок №1)с цифрами. Учащиеся рассматривают и запоминают их, в течение 30 сек. Затем задаются вопросы.

  • Какая цифра изображена на коричневой карточке?
  • Сколько карточек между желтой и бирюзовой карточками?
  • Запишите в тетрадь цифры (номера) и цвет карточек.

3) Задание на развитие внимания и способности анализировать.

Перед вами круги с числами. Некоторые числа пропущены. Числа расставлены в соответствии с определенными законами. Вставьте пропущенные числа.

Правило весов при решении уравнений

3. Актуализация опорных знаний

На доске макет весов с подвижными гирями. Предлагаются вопросы:

— Что произойдет, если на чашки весов положить одинаковый вес?

— А если с чашек убрать одинаковый вес?

— Что произойдет, если убрать с чашек килограмм сахара и гирю весом 1 кг, зная, что весы были в равновесии?

4. Решение развивающих задач

Правило весов при решении уравнений

5. Изучение нового материала

Пробное задание: Решить уравнение

1. Рассмотреть уравнение, как модель задачи с весами.

Рисунок весов: на одной чаше 3 квадрата и 33 “звездочки”, на второй – 8 квадратов и 8 “звездочек”.

2. Привести данное уравнение к уравнению, где переменная стоит в одной части.

3. Решить, получившееся уравнение, используя известные способы.

4. Вывести общее правило для решения уравнений такого типа.

3a – 3a + 33 = 8a – 3a + 8; 33 = 5a + 8; 5a + 8 = 33; 5a = 33 – 8; 5a = 25; a = 25 : 5; a = 5

– Как же вы преобразовали уравнение? (Мы вычли из обеих частей уравнения одно и то же число и получили уравнение, которое можно решить, пользуясь правилами нахождения неизвестного компонента.)

– Как такой метод можно назвать, если вспомнить, с каким предметом вы сравнивали уравнение? (Метод “весов”.)

– Молодцы! (Сформулируйте алгоритм решения уравнений методом “весов”.)

1) Вычесть из обеих частей уравнения одно и то же выражение с переменной.

2) Упростить получившиеся уравнение.

3) Решить уравнение, используя правила нахождения неизвестного компонента.

Алгоритм фиксируется на доске.

— Уточните тему урока. (Решение уравнений методом “весов”)

6. Психологический тренинг.

1. Упражнение для профилактики нарушения зрения.

Глазами нарисовать сегодняшнюю дату.

2. Отстукивание простых ритмических рисунков подушечками пальцев обеих рук по подражанию: с — средний; м — мизинец; у — указательный; бо — большой; бе — безымянный; 1 — один удар.

Правило весов при решении уравнений

3. Дыхательно-координационное упражнение.

Глубокий вдох. Во время вдоха медленно поднять прямые руки до уровня груди ладонями вперед (4-6 сек.).

Задержать дыхание. Во время задержки сконцентрировать внимание на середине ладоней (ощущение “горячей монетки” в центре ладони (2-3 сек.)).

Медленный выдох. Выдыхая, рисовать перед собой обеими руками одновременно окружность (правой рукой) и квадрат (левой рукой).

Правило весов при решении уравнений

7. Первичное закрепление

Цель: организовать усвоение детьми нового способа решения данного уравнения с их проговариванием во внешней речи: фронтально; в парах или группах.

Страница 51 – правило “весов” — читают.

Первое уравнение один ученик решает у доски, комментируя решение вслух. Второе и третье уравнение учащиеся решают в парах, комментируя решение друг другу.

1) 2х-5=х 2х-х-5=х-х х-5=0 х=5

8. Подведение итогов

— Проверьте, как вы поняли новый метод: решите уравнение 5x + 6 = 7x – 10 методом “весов”.

После выполнения работы проводится самопроверка по эталону:

Правило весов при решении уравнений

Сопоставление проводится по шагам алгоритма, фиксируя выполнение каждого шага.

— У кого вызвал затруднение первый шаг алгоритма?

— Что у вас вызвало затруднение?

— В каком месте дальше у вас возникло затруднение?

— В чём причина, возникшего затруднения?

9. Рефлексия деятельности на уроке

Карточка для этапа рефлексии:

Способы действийЗнаюУмею
Способ решения методом “весов”
Способ нахождения неизвестного компонента

На другой стороне:

В самостоятельной работе у меня всё получилось__________________________

Я смог понять причину ошибки, которую допустил в самостоятельной работе (если были)___

Я достиг поставленной цели________________________________________________

Сегодня я учился самостоятельно учиться____________________________________

У меня остались затруднения________________________________________________

10. Домашнее задание

Стр. 51 — правило “весов”.

№ 1 — творческая задача.

Мальчик Пат и собачонка весят два пустых бочонка.
Собачонка без мальчишки весит две больших коврижки.
А с коврижкой поросенок весит – видите – бочонок.
Сколько весит мальчик Пат? Сосчитай-ка поросят.

(Мальчик весит столько же, сколько два поросёнка.)

№199 — из учебника.

1. Дорофеев Г.В., Петерсон Л.Г. Математика..5 класс. Часть 1. -М.: Издательство “Ювента”, 2011.

2. htt://www.probydis.ru/aforizmy-po-temam-o-cheloveke/774- aforizmy-o-logike/html/

4. Сценарии уроков к учебнику Математика для 5-6 классов основной школы по программе “Учусь учиться”. Диск. Центр СДП АПК и ППРО Минобрнауки РФ, 2008.

5. Гончарова Л.В. Предметные недели в школе. Математика. Волгоград: Учитель, 2006.

Видео:Урок № 11 "Решение уравнений методом весов" (к рабочей тетради "Готовлюсь в 5-й")Скачать

Урок № 11 "Решение уравнений методом весов" (к рабочей тетради "Готовлюсь в 5-й")

Презентация по математике «Решение уравнений методом весов»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Правило весов при решении уравнений

Описание презентации по отдельным слайдам:

Правило весов при решении уравнений

Тема урока: Метод весов в решении уравнений Составила: учитель математики МБОУ «СОШ №37» г. Кемерово Воракуто И.И.

Правило весов при решении уравнений

Правило весов при решении уравнений

Нахождение неизвестных компонентов равенства 1. Сложение Х + 23 = 36 24 + у = 47 х;у-неизвестные слагаемые 2. Вычитание а – 17 = 59 37 – в = 21 а-неизвестное уменьшаемое в – неизвестное вычитаемое 3. Умножение z ⸳ 7 = 21 14 ⸱ r = 56 z;r – неизвестные множители 4.Деление s : 3 = 15 60 : t = 15 s – неизвестное делимое t – неизвестный делитель

Правило весов при решении уравнений

Составить равенство по картинке

Правило весов при решении уравнений

Рассуждения: 50+x = 210 -50 -50 _________ х = 160 —————— 50 +160 =210 210 = 50+х -50 -50 _________ 160 = х —————— 50 +160 =210

Правило весов при решении уравнений

Рассуждения: 5x — 3 = 17 +3 +3 __________ 5х = 20 :5 :5 х = 4 ——————- 5⸱4 — 3 = 17 Обе части равенства содержат число 3 Обе части равенства содержат множитель 5 Проверяем

Правило весов при решении уравнений

Правило весов 1. Обе части равенства можно поменять местами 2.Обе части равенства можно увеличить или уменьшить на одно и тоже число, отличное от нуля 3. Обе части равенства можно умножить или разделить на одно и тоже число, отличное от нуля

Правило весов при решении уравнений

Определения -Уравнение — это равенство, содержащее букву, значение которой надо найти -Значение буквы, при котором из уравнения получается верное числовое равенство, называют корнем уравнения -Решить уравнение — значит найти все его корни или убедиться, что это уравнение не имеет ни одного корня

Правило весов при решении уравнений

Решите устно уравнения 7⸱у=21 23– x =12 38+x=78 x :6=4 10-5x =5 6x – 14 = 4 7x:8=7 49+x = 0

Правило весов при решении уравнений

Решить уравнения методом весов 6х +9= 2х + 33 2х + 11= 4х — 9

Правило весов при решении уравнений

Найти ошибку в решении 1) (32-х)+12=17 2)(4х+8):5=16 32-х=17+12 4х+8=16⸱5 32-х=29 4х+8=80 х=32-29 4х=80+8 х=4 4х=88 х=88:4 х=22

Правило весов при решении уравнений

Самостоятельная работа Вариант 1 Вариант 2 Реши уравнения: а + 17 = 98 247 – х = 199 (139 + у) – 27 = 459 Реши уравнения: 67 +m= 95 n– 431 = 528 425 – (k+ 13) = 392 В летний лагерь прибыли 147 детей. После того, как несколько человек ушли дежурить в столовую, на площадке осталось 118 детей. Сколько человек ушли дежурить в столовую? В трамвае ехали 112 пассажиров. На остановке несколько человек вышли, после чего в трамвае осталось 63 пассажира. Сколько человек вышли из трамвая на остановке?

Правило весов при решении уравнений

Ответы к самостоятельной работе 1 вариант 2 вариант 1) а=81 1) m=28 2) х= 48 2) n=959 3) у=347 3) k=20 4) 29 ЧЕЛОВЕК 4) 49 ЧЕЛОВЕК

Правило весов при решении уравнений

Смайлик с каким словом вы выберете после окончания урока ?

Правило весов при решении уравнений

Спасибо за урок !

Правило весов при решении уравнений

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 949 человек из 80 регионов

Правило весов при решении уравнений

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 681 человек из 75 регионов

Правило весов при решении уравнений

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Метод весов Примеры решения уравненийСкачать

Метод весов  Примеры решения уравнений

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 566 268 материалов в базе

Материал подходит для УМК

Правило весов при решении уравнений

«Математика», Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др. / Под ред. Дорофеева Г.В., Шарыгина И.Ф.

8.5. Что такое уравнение

Другие материалы

  • 11.06.2020
  • 169
  • 12

Правило весов при решении уравнений

  • 06.06.2020
  • 346
  • 6

Правило весов при решении уравнений

  • 06.06.2020
  • 179
  • 1

Правило весов при решении уравнений

  • 06.06.2020
  • 179
  • 8

Правило весов при решении уравнений

  • 05.06.2020
  • 130
  • 0

Правило весов при решении уравнений

  • 05.06.2020
  • 171
  • 13

Правило весов при решении уравнений

  • 02.06.2020
  • 164
  • 4

Правило весов при решении уравнений

  • 01.06.2020
  • 257
  • 4

Правило весов при решении уравнений

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 18.06.2020 2007
  • PPTX 2.4 мбайт
  • 44 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Воракуто Ирина Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Правило весов при решении уравнений

  • На сайте: 7 лет
  • Подписчики: 0
  • Всего просмотров: 5034
  • Всего материалов: 7

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Уравнения как весы Часть 1Скачать

Уравнения как весы Часть 1

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Правило весов при решении уравнений

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Правило весов при решении уравнений

В Рособрнадзоре рассказали, как будет меняться ЕГЭ

Время чтения: 2 минуты

Правило весов при решении уравнений

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Правило весов при решении уравнений

В России могут объявить Десятилетие науки и технологий

Время чтения: 1 минута

Правило весов при решении уравнений

В Египте нашли древние школьные «тетрадки»

Время чтения: 1 минута

Правило весов при решении уравнений

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Правило весов при решении уравнений

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🎬 Видео

Решение уравнений. Пример с весами 2Скачать

Решение уравнений. Пример с весами 2

Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Решение линейных уравнений методом "Весов"Скачать

Решение линейных уравнений методом "Весов"

Уравнения как весы Часть 2Скачать

Уравнения как весы Часть 2

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Решение уравнений. Пример с весамиСкачать

Решение уравнений. Пример с весами

Уравнения как весы Часть 3Скачать

Уравнения как весы Часть 3

Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать

Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений
Поделиться или сохранить к себе: