Сформулируйте два основных правила преобразования уравнений.
Решение
1 ) В уравнении можно перенести слагаемые из одной части в другую, изменив при этом его знак на противоположный.
2 ) Обе части уравнения можно умножить или разделить на одно и то же, не равное нулю число.
Нашли ошибку?
Если Вы нашли ошибку, неточность или просто не согласны с ответом, пожалуйста сообщите нам об этом
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Равносильные уравнения, правила преобразований
п.1. Понятие равносильных уравнений
Равносильными называют уравнения, имеющие одни и те же корни.
Равносильными считаются также уравнения, каждое из которых не имеет корней.
Каждое из уравнений имеет один и тот же корень x=1
$implies$ уравнения равносильны
$x_1 = 3 и x_2 = -2$
Первое уравнение имеет два корня, а второе – только один корень
$implies$ уравнения неравносильны
Оба уравнения не имеют решений
$implies$ уравнения равносильны
п.2. Правила преобразования уравнений
При решении уравнения его стараются заменить более простым равносильным уравнением. При этом используют следующие правила.
Правила преобразования уравнений
- 1. В любой части уравнения можно раскрывать скобки и приводить подобные.
- 2. Любое слагаемое в уравнении можно перенести из одной части в другую, изменив его знак.
- 3. Обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.
В результате этих преобразований всегда получаем уравнение, равносильное данному.
п.3. Примеры
Пример 1. Решите уравнение $ frac x = 12 — 7x$
$ frac x = 12 — 7x iff frac x + 7x = 12 iff 7 frac x = 12 iff x = 12:7 frac iff$
$ x = 12 cdot frac = frac =1 frac $
Пример 2. Решите уравнение $ frac — frac = 10$
$ frac — frac = 10 | times 14 iff 6x — x = 140 iff 5x = 140 iff x = 140 : 5 = 28$
Пример 3. Решите уравнение $7x — frac =frac 15 (3x+14)$
$7x — frac 25 = frac 15 (3x + 14) | times 5 iff 35x — 2 = 3x + 14 iff 35x — 3x = 14 + 2 iff$
$ iff 32x = 16 iff x = frac = frac 12$
Ответ: x = frac 12
Пример 4. Решите уравнение $frac — frac = frac $
$frac — frac = frac | times 8 iff 4(5x-1)-(3x+4)=2(x-3) iff $
$ iff 15x=2 iff x= frac $
Пример 5. При каких значениях a равносильны уравнения
Найдём корень первого уравнения
$3(x-1)=5-x iff 3x-3=5-x iff 3x+x=5+3 iff 4x=8 iff x=2$
Подставим во второе
$a cdot 2=2+a iff 2a-a=2 iff a=2$
При a=2 оба уравнения имеют один корень x=2.
Видео:Урок 5 ТОЖДЕСТВА. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ 7 КЛАСССкачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
🔥 Видео
Тождество. Тождественные преобразования. Алгебра, 7 классСкачать
Преобразование целых выражений. 7 класс.Скачать
7 класс, 33 урок, ТождестваСкачать
РАВНОСИЛЬНЫЕ УРАВНЕНИЯ И ИХ СВОЙСТВА. Видеоурок | АЛГЕБРА 7 классСкачать
Алгебра 7 класс. Повторение - bezbotvyСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решать уравнения с дробью? #shortsСкачать
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Система уравнений. Метод алгебраического сложенияСкачать
7 класс, 24 урок, Формулы сокращённого умноженияСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Тождества. Тождественные преобразования выражений. 6 класс.Скачать