Рассмотрим конкретные примеры решения систем линейных уравнений методом подстановки.
В данном случае удобно из второго уравнения системы выразить x через y и подставить полученное выражение вместо x в первое уравнение:
Первое уравнение — уравнение с одной переменной y. Решаем его:
Полученное значение y подставляем в выражение для x:
В данной системе проще из первого уравнения выразить y через x и подставить полученное выражение вместо y во второе уравнение:
Второе уравнение — уравнение с одной переменной x. Решим его:
В выражение для y вместо x подставляем x=1 и находим y:
Здесь удобнее из второго уравнения выразить y через x (поскольку делить на 10 проще, чем на 4, -9 или 3):
Решаем первое уравнение:
Подставляем x=2 и находим y:
Прежде чем применить метод подстановки, эту систему следует упростить. Обе части первого уравнения можно умножить на наименьший общий знаменатель, во втором уравнении раскрываем скобки и приводим подобные слагаемые:
Получили систему линейных уравнений с двумя переменными. Теперь применим подстановку. Удобно из второго уравнения выразить a через b:
Решаем первое уравнение системы:
3(21,5 + 2,5b) — 7b = 63
Осталось найти значение a:
Согласно правилам оформления, ответ записываем в круглых скобках через точку с запятой в алфавитном порядке.
Выражая одну переменную через другую, иногда удобнее оставлять её с некоторым коэффициентом.
В данном случае удобно выразить y через x из второго уравнения. При этом лучше не делить обе части уравнения на 3, а оставить коэффициент 3 рядом с y, поскольку в первом уравнении 12y кратно 3:
Из всех способов решения систем уравнений метод подстановки в алгебре используется чаще других. С помощью этого метода могут быть решены не только системы линейных уравнений, но и системы уравнений других видов.
- Решение систем уравнений
- Графический метод решения систем уравнений
- Начнём с графического метода
- Примеры с решением
- Решение систем уравнений методом подстановки
- Симметричные системы уравнений с двумя неизвестными
- Урок-практикум по алгебре. 9-й класс. Тема: «Решение систем уравнений второй степени»
- Презентация к уроку
- 💡 Видео
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Решение систем уравнений
Содержание:
Графический метод решения систем уравнений
Вспоминаем то, что знаем
Что такое график уравнения с двумя неизвестными?
Что представляет собой график линейного уравнения с двумя неизвестными?
Решите графическим методом систему линейных уравнений:
Открываем новые знания
Решите графическим методом систему уравнений:
Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту
В курсе алгебры 7-го класса вы изучали системы линейных уравнений.
Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Начнём с графического метода
Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.
Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.
Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.
Возможно вам будут полезны данные страницы:
Примеры с решением
Пример 1:
Решим систему уравнений:
Построим графики уравнений
Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).
Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).
Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.
Ответ: (2; 5) и (-1; 2).
Пример 2:
Выясним количество решений системы уравнений:
Построим графики уравнений
Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.
Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.
Ответ: Два решения.
Решение систем уравнений методом подстановки
Вспоминаем то, что знаем
Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.
Решите систему линейных уравнений методом подстановки:
Открываем новые знания
Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?
Решите систему уравнений методом подстановки:
Как решить систему двух уравнений с двумя неизвестными методом подстановки?
Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?
Ранее вы решали системы уравнений первой степени.
Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.
Пример 3:
Пусть (х; у) — решение системы.
Выразим х из уравнения
Подставим найденное выражение в первое уравнение:
Решим полученное уравнение:
Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.
Чуть сложнее дело обстоит в следующем примере.
Пример 4:
Решим систему уравнений:
Пусть (х; у) — решение системы.
Выразим у из линейного уравнения:
Подставим найденное выражение в первое уравнение системы:
После преобразований получим:
Ответ: (-0,5; 0,5), (4; 5).
Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».
Пример 5:
Подставим во второе уравнение тогда его можно переписать в виде:
Теперь выразим х через у из первого уравнения системы:
Подставим в полученное ранее уравнение ху = 2:
Корни этого уравнения:
.
Иногда решить систему можно, используя метод алгебраического сложения.
Пример 6:
Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:
.
Корни этого уравнения:
Подставим найденные значения в первое уравнение. Рассмотрим два случая:
1)
2) , получим уравнение корней нет.
Иногда упростить решение удаётся, используя различные варианты замены неизвестных.
Пример 7:
Решим систему уравнений:
Обозначим
Второе уравнение системы примет вид:
Решим полученное уравнение. Получим, умножая обе части на 2а:
Осталось решить методом подстановки линейные системы:
Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями
Напомним, что при решении задач обычно действуют следующим образом:
1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;
2) решают полученную систему;
3) отвечают на вопрос задачи.
Пример 8:
Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.
Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см.
Воспользуемся теоремой Пифагора:
Решим систему. Выразим из первого уравнения у:
Подставим во второе уравнение:
Корни уравнения:
Найдём
С учётом условия получим ответ: длина — 12 см, ширина — 5 см.
Пример 9:
Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.
Пусть х — первое число, у — второе число.
Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.
Вычтем из второго уравнения первое. Получим:
Дальше будем решать методом подстановки:
Подставим в первое уравнение выражение для у:
Корни уравнения: (не подходит по смыслу задачи).
Найдём у из уравнения:
Получим ответ: 16 и 7.
Симметричные системы уравнений с двумя неизвестными
Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется.
Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.
ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.
Например, если в системе уравнений
переставить местами неизвестные х и у, то получим систему:
Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.
Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:
Сначала научитесь выражать через неизвестные выражения:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Урок-практикум по алгебре. 9-й класс. Тема: «Решение систем уравнений второй степени»
Класс: 9
Презентация к уроку
Цели урока (Слайд 1):
- Обучающие: систематизировать знания по данной теме, выработать умение решать системы уравнений, содержащие уравнения второй степени графическим способом, способами подстановки и сложения.
- Развивающие: развивать вычислительную технику, мыслительную активность, логическое мышление, интерес к предмету; способствовать формированию ключевых понятий; выполнение заданий различного уровня сложности.
- Воспитывающие: воспитывать внимательность, аккуратность, умения четко организовывать самостоятельную и индивидуальную работу.
Оборудование: доска, мел, линейка, карточки – задания для индивидуальной работы, наглядность, презентация.
1. Организационный момент.
а) Отметить отсутствующих;
б) объявить тему урока;
в) объявить цели урока.
2. Фронтальный опрос правил и определений по теме урока. В параллели проводится индивидуальная работа (Приложение 1) с учащимися, имеющими слабую мотивацию к учебе.
Какие способы решения систем уравнений с двумя переменными знаете?
(Графический, подстановки, сложения) (Слайд 3).
Рассмотрим графический способ. (Слайд 4)
- Как решается система графическим способом?
(Необходимо: построить графики уравнения в одной координатной плоскости; найти координаты точек пересечения графиков, которые и будут решением системы.) - Почему координаты точек пересечения являются решением системы уравнений?
(Координаты точек пересечения удовлетворяют каждому уравнению системы.) - Как записывается решение системы уравнений, если она решается графическим способом?
(Приближенным равенством для значений переменных.) - От чего зависит количество решений системы уравнений при графическом способе решения?
(От количества точек пересечения.) - Сколько точек имеют графики, если система имеет три решения? (Три точки.)
3. Работа с наглядностью. (Слайды 5, 6)
- Сколько точек пересечения имеют графики. (Приложение 2)
- Сколько решений имеет система, если графики изображены на рисунке. (Приложение 2)
- Совместить графики уравнений с формулами, которыми они задаются. (Приложение 3)
4. Самостоятельная работа 1 (слайд 7) с использованием шаблонов координатной плоскости.
Изобразив схематически графики уравнений, укажите количество решений системы.
5. При графическом способе решения мы находим приближенные значения переменных. А как же найти точные значения?
(Решить систему способом подстановки или сложения . )
- Как решить систему способом подстановки? (Слайд 8)
(Выражают из уравнения одну переменную через другую. Подставляют эту подстановку в другое уравнение. Решают полученное уравнение с одной переменной. Находят соответствующие значение второй переменной, из подстановки). - Есть ли разница, из какого уравнения системы получить подстановку?
(Нет. Если в систему входит уравнение 1-ой степени, то подстановку получают из этого уравнения. Если оба уравнения второй степени, то подстановку получают из любого.) - Как записать решение системы? (Парой чисел.)
- Как решить систему способом сложения? (Слайд 13)
6 . Устная работа. В параллели проводится индивидуальная работа с учащимися средней мотивации к учебе (Приложение 4)
а) Определите степень уравнения (Слайд 9):
2 | 1 | 2 | 2 | 1 |
б) Выразите одну переменную через другую (слайд 10):
в) Решите систему уравнений (Слайд 11):
Решений нет | (-1; 2) ; (-2; 1) | (1,6; 3) | (10;1,8) |
г) Определите корни уравнения (Слайд 12):
-1; 4 | 3; 4 | -4; -2 |
6. Работа в тетрадях (Слайд 14): № 440 (а), 433(а), 448(а), 443(а), [438].
7. Самостоятельная работа 2. (Слайд 15)
Решите систему уравнений.
Вариант 1 | Вариант 2 |
(-4;-5); (2;1) | (-6;-9); (8;5) |
Решений нет | (4;-1); (-4;1) |
(-0,5;-11); (8; 6) | (-4;-5); (14;4) |
(-0,4;0,3); (3;2) | Решений нет |
(3;1) |
8. Подведение итогов. Занести результаты каждого ученика в оценочный лист.
№ п/п | Ф.И. ученика | Индивидуальная | Устная | Самостоятельная 1 | Самостоятельная 2 | Письменная | Итоговая оценка |
1. | |||||||
2. | |||||||
3. |
9. Домашнее задание (Слайд 16): п.18–19, с.109–112, № 433 (б), 440(б), 448(б), 443(б).
- Учебник “Алгебра 9 класс”, авторы: Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, “Просвещение”, 2008.
- Уроки алгебры в 9 классе, авторы В.И.Жохов, Л.Б.Крайнева, “Вербум-М”, 2000.
- Дидактические материалы по алгебре 9 класс, авторы В.И.Жохов и др., “Просвещение”, 2009.
- Открытый банк задач по ГИА.
💡 Видео
Решение систем уравнений методом подстановкиСкачать
Решение систем уравнений. Методом подстановки. Выразить YСкачать
Решение систем уравнений методом сложенияСкачать
Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать
Решение систем линейных уравнений методом подстановки (видеоурок) - 7 класс алгебраСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
МЕРЗЛЯК-7 АЛГЕБРА. РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ МЕТОДОМ ПОДСТАНОВКИ. ПАРАГРАФ-27Скачать
Алгебра 7 класс. Решение систем уравнений методом подстановкиСкачать
7 класс, 38 урок, Метод подстановкиСкачать
Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать
Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.Скачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Решение систем линейных уравнений способом подстановки.Скачать
Решаем систему методом подстановки. ЕГЭ-2023 по математике.Скачать
Решение систем уравнений. Способ подстановки.Скачать
Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравненийСкачать