Практическая работа по информатике 9 класс графическое решение уравнения

Практическая работа «Графическое решение уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Приближенное решение уравнений графическим методом и с помощью метода «Подбор параметра»

Задача. Найти в электронных таблицах корень уравнения приближенным методами (графическим и численным).

Цель работы. Научиться в электронных таблицах при­ ближенно решать уравнения графическим методом и мето­ дом подбора параметра.

Задание 1. В электронных таблицах грубо приближенно графическим методом решить уравнение у = Практическая работа по информатике 9 класс графическое решение уравнения

*3адание 2. Уточнить значения корней уравнения мето­ дом Подбор параметра.

Приближенное решение уравнения графическим методом

1. Запустить электронные таблицы OpenOffice Calc коман­ дой [Программы- OpenOffice -Электронные таблицы].

2. Представим функцию у = Практическая работа по информатике 9 класс графическое решение уравненияв форме табли­ цы значений.

— В диапазон ячеек В1: J 1 ввести значения ар­гумента функции от -4,0 до 4,0 с шагом 1.

— В ячейку В2 ввести формулу для вычисления значений
функции (см рис.) и скопируем ее в диапазон яче­ ек В2: J 2 .

Практическая работа по информатике 9 класс графическое решение уравнения

Для грубо приближенного определения корней уравне­ ния построить диаграмму типа График.

Построим график функции.

Практическая работа по информатике 9 класс графическое решение уравнения

3. Ввести команду [Вставка- Диаграмма. ] и с помощью Мастера диаграмм постро­ ить диаграмму типа гра­ фик.

Приближенно можно опре­ делить, что график пересекает ось X в точках с координатами -2 и 2, т. е. уравнение имеет корни

Приближенное решение уравнения методом Подбор параметра

Для более точного приближенного решения уравнения методом Подбор параметра сначала необходимо установить требуемую точность представления чисел в ячейках (напри­мер, до 0,001).

1. Ввести команду [Формат — Формам ячеек. ].

В появившемся диалоговом окне Формат ячеек вы­ брать вкладку Число.

С помощью счетчика Число десятичных знаков установить необходимое количе­ ство знаков после запятой.

Практическая работа по информатике 9 класс графическое решение уравнения

Практическая работа по информатике 9 класс графическое решение уравненияДля приближенного решения уравнения с использова­нием метода Подбор параметра сначала необходимо вы­брать ячейку, в которой первое значение функции y наибо­ лее близко к нулю.

2. Таким значением является -0,4 в ячейке D 2. Выделить эту
ячейку и ввести команду [Данные – Анализ «что если» — Подбор параметра].

3. На панели Подбор параметра в поле Значение ввести
требуемое значение функции (в данном случае 0).

В поле Изменяемая ячейка ввести адрес ячейки $ D $1, в которой будет производиться подбор значения аргу­ мента. Щелкнуть по кнопке Да.

Практическая работа по информатике 9 класс графическое решение уравнения

Практическая работа по информатике 9 класс графическое решение уравнения

Практическая работа по информатике 9 класс графическое решение уравнения Практическая работа по информатике 9 класс графическое решение уравнения4. На панели OpenOffice . org Calc будет выведена инфор­мация о величине подобран­ ного значения функции. Щелкнуть по кнопке Да.

5. В ячейке аргумента D 1 появится подобранное значение
корня с заданной точностью -2,093.

Для уточнения значения второго корня уравнения мето­дом Подбор параметра сначала необходимо выбрать ячей­ ку, в которой второе значение функции у наиболее близко к нулю.

6. Таким значением является -1,4 в ячейке Н2. Выделить
ячейку, ввести команду [Данные – Анализ «что если» — Подбор параметра]. и повторить пункты 3 — 4.

7. В ячейке аргумента H 1 появится подобранное значение
второго корня 2,349.

Практическая работа по информатике 9 класс графическое решение уравнения

8. Таким образом, корни уравнения х1

2,349 найдены с точностью представления чисел в ячейках таблицы.

Задания для самостоятельного выполнения

1. Практическое задание. В электронных таблицах приближенно решить уравнение х — sinx = 0 графически и с помощью метода Подбор параметра.

2. 2. Практическое задание. В электронных таблицах приближенно решить уравнение х — cosx = 0 графически и с помощью мето­ да Подбор параметра

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Графическое решение уравнений Практическая 2.2 Информатика и ИКТ 9 класс. — презентация

Презентация была опубликована 6 лет назад пользователемЖанна Лихачёва

Похожие презентации

Видео:Решение системы уравнений графическим методомСкачать

Решение системы уравнений графическим методом

Презентация на тему: » Графическое решение уравнений Практическая 2.2 Информатика и ИКТ 9 класс.» — Транскрипт:

1 Графическое решение уравнений Практическая 2.2 Информатика и ИКТ 9 класс

2 Автор презентации «Графическое решение уравнений» Помаскин Юрий Иванович — учитель информатики МБОУ СОШ5 г. Кимовска Тульской области. Презентация сделана как учебно-наглядное пособие к учебнику «Информатика и ИКТ 9» автор Н.Д. Угринович. Предназначена для демонстрации на уроках изучения нового материала Используемые источники: 1.Н.Д.Угринович «Информатика и ИКТ 9 », Москва, БИНОМ Лаборатория знаний, 2012 стр Примечание: проект адаптирован под использование среды программирования Visual Basic 6

3 Графическое решение уравнений Цель работы: научиться создавать компьютерные модели графического решения уравнений на языке Visual Basic 6 Задание : разработать проект в котором приближенно графически решается уравнение x^3 — sin (x) = 0

4 Теория вопроса Решить уравнение, значит найти при каких значениях переменной х, выражение равно 0. Графически это означает, что решением уравнения будут точки пересечения графика с осью х. Т.о. задача сводится к построению графика и нахождению точек пересечения этого графика с осью х на выбранном интервале Корни уравнения

5 Выполнение работы На форме поместим графическое поле и две командные кнопки

6 Код программы Уравнение, корни которого ищем. Здесь можно заменить уравнение и найти его корни в заданном диапазоне

7 Результат после запуска программы Три корня (приблизительно) Х1 = — 0,9 Х2 = 0 Х3 = 0,9

8 Практическая часть К графическому решению уравнений прибегают в том случае, когда уравнение имеет сложный вид и нет алгоритма вычисления корней. Корни определяются приближенно на заданном интервале. Задание: проверь работу программы на разобранном примере и найди корни предложенных уравнений.

9 Задание Найди корни предложенных уравнений. Результаты представь в тетради в виде таблицы. Уравнение Корни Х1Х2Х3 x^3 — sin(x) = 0- 0,900,9 Графическое решение уравнений Примечание: уравнения предлагает преподаватель по своему усмотрению

Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; Практическая работа по информатике 9 класс графическое решение уравнения.

Практическая работа по информатике 9 класс графическое решение уравнения

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Практическая работа по информатике 9 класс графическое решение уравнения

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Практическая работа по информатике 9 класс графическое решение уравнения

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Практическая работа по информатике 9 класс графическое решение уравнения

Слайд 6 Найдите корни уравнения Практическая работа по информатике 9 класс графическое решение уравнения, используя графический способ решения уравнений (Рис. 5).

Практическая работа по информатике 9 класс графическое решение уравнения

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

Практическая работа по информатике 9 класс графическое решение уравнения

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

Практическая работа по информатике 9 класс графическое решение уравнения

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

Практическая работа по информатике 9 класс графическое решение уравнения

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

Практическая работа по информатике 9 класс графическое решение уравнения

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

Практическая работа по информатике 9 класс графическое решение уравнения

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение Практическая работа по информатике 9 класс графическое решение уравнения.

Для этого: в одной системе координат построить графики функций у1= Практическая работа по информатике 9 класс графическое решение уравненияи у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=Практическая работа по информатике 9 класс графическое решение уравнениявоспользоваться встроенной функцией Корень (Рис. 11).
  • Практическая работа по информатике 9 класс графическое решение уравнения

    2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    Практическая работа по информатике 9 класс графическое решение уравнения

    3 этап: Определение корней уравнения.

    Графики функций у1= Практическая работа по информатике 9 класс графическое решение уравненияи у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение Практическая работа по информатике 9 класс графическое решение уравненияимеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    Практическая работа по информатике 9 класс графическое решение уравнения

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    Практическая работа по информатике 9 класс графическое решение уравнения

    Практическая работа по информатике 9 класс графическое решение уравнения

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения Практическая работа по информатике 9 класс графическое решение уравненияс точностью до 0,001.

    • ввести функцию у=Практическая работа по информатике 9 класс графическое решение уравненияи построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    Практическая работа по информатике 9 класс графическое решение уравнения

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    🔥 Видео

    Графический способ решения систем уравнений | Алгебра 9 класс #18 | ИнфоурокСкачать

    Графический способ решения систем уравнений | Алгебра 9 класс #18 | Инфоурок

    Решение системы линейных уравнений графическим методом. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. 7 класс.

    8 класс, 21 урок, Графическое решение уравненийСкачать

    8 класс, 21 урок, Графическое решение уравнений

    ГрафыСкачать

    Графы

    Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

    Как решать систему уравнений графическим методом? | Математика | TutorOnline

    ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 классСкачать

    ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 класс

    Практическая работа "Решение задач линейного программирования графическим методом".Скачать

    Практическая работа "Решение задач линейного программирования графическим методом".

    7 класс, 35 урок, Графическое решение уравненийСкачать

    7 класс, 35 урок, Графическое решение уравнений

    Графическое решение уравненийСкачать

    Графическое решение уравнений

    Упрощение логических выраженийСкачать

    Упрощение логических выражений

    7 класс, 34 урок, Функция y=х^2 и её графикСкачать

    7 класс, 34 урок, Функция y=х^2 и её график

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Как проверяют учеников перед ЕНТСкачать

    Как проверяют учеников перед ЕНТ

    ОГЭ Информатика 2020. Задание 9. Поиск количества путей в графе.Скачать

    ОГЭ Информатика 2020. Задание 9. Поиск количества путей в графе.

    Как решать уравнение графически. 3 способа графического решения квадратного уравнения.Скачать

    Как решать уравнение графически.  3 способа графического решения квадратного уравнения.

    Способы решения систем нелинейных уравнений. 9 класс.Скачать

    Способы решения систем нелинейных уравнений. 9 класс.

    Математика это не ИсламСкачать

    Математика это не Ислам
    Поделиться или сохранить к себе: