Потеря корней в тригонометрических уравнениях

Содержание
  1. math4school.ru
  2. Ошибки в уравнениях
  3. Потеря корней
  4. Посторонние корни
  5. Ошибки, связанные с заменой переменной
  6. Ошибки, связанные с использованием модуля
  7. Подбор корней без обоснования
  8. Ошибки в логарифмических и показательных уравнениях
  9. Ошибки в тригонометрических уравнениях
  10. Типичные ошибки в решении задания С1(потеря корней, появление «посторонних» корней) материал для подготовки к егэ (гиа) по алгебре (11 класс) по теме
  11. Скачать:
  12. Предварительный просмотр:
  13. Подписи к слайдам:
  14. По теме: методические разработки, презентации и конспекты
  15. Потеря корней в тригонометрических уравнениях
  16. Методы решения тригонометрических уравнений.
  17. 1. Алгебраический метод.
  18. 2. Разложение на множители.
  19. 3. Приведение к однородному уравнению.
  20. 4. Переход к половинному углу.
  21. 5. Введение вспомогательного угла.
  22. 6. Преобразование произведения в сумму.
  23. 🔥 Видео

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

math4school.ru

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Видео:Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать

Задание №13. Как отбирать корни в тригонометрической окружности? 🤔

Ошибки в уравнениях

Потеря корней в тригонометрических уравнениях

При выполнении контрольных, тестовых и экзаменационных работ по математике учащиеся решают самые разнообразные уравнения, отличающиеся по тематике и по сложности. Разобрать все ошибки, которые при этом допускаются, не представляется возможным. Ниже предлагаются примеры лишь наиболее распространенных ошибок и анализ ситуаций, в которых эти ошибки допускаются.

Потеря корней

При решении уравнений из-за выполнения нетождественных преобразований может произойти либо потеря корней , либо появление посторонних корней .

При выполнении нетождественных преобразований в процессе решения уравнения может произойти сужение области допустимых значений неизвестного , а значит, корни могут оказаться потерянными.

K Упражнение. Решить уравнение lg (x – 10) 2 + lg x 2 = 2lg 24 .

L Неправильное решение.

2lg (x – 10) + 2lg x = 2lg 24,

Произвели проверку и убедились, что все корни удовлетворяют данному уравнению.

Комментарий . Из-за неправильного применения формул произошло сужение области допустимых значений неизвестного.

J Правильное решение.

Ответ: –2; 4; 6 и 12.

Потеря корней в тригонометрических уравнениях

При делении обеих частей уравнения на выражение, содержащее неизвестное , могут быть потеряны корни, которые обращают эти выражения в ноль.

K Упражнение 1. Решить уравнение 3 х ( х 2 – 2 х – 3) = 9 ( х 2 – 2 х – 3) .

L Неправильное решение.

Разделим обе части уравнения на квадратный трехчлен, записанный в скобках, и получим:

J Правильное решение.

Перенесем правую часть исходного уравнения влево и вынесем общий множитель за скобки:

K Упражнение 2. Решить уравнение lg 2 x – lg x = 0 .

L Неправильное решение.

Разделим обе части уравнения на lg x и получим:

J Правильное решение.

Необходимо помнить, что обычно легче исключить посторонний корень, чем найти потерянный.

Посторонние корни

При решении уравнений существуют два диаметрально противоположных мнения относительно полученного результата. Одни считают, что проверка должна производиться всегда, другие считают ее необязательной. На самом деле проверка полученных корней в одних случаях является обязательной и является частью решения уравнения, а в других случаях в проверке необходимости нет.

Проверка полученного решения уравнения обычно делается с целью исключения посторонних корней, которые чаще всего появляются в результате нетождественных преобразований, приводящих к расширению области допустимых значений переменного. Рассмотрим далее некоторые случаи появления посторонних корней.

Это может случиться при умножении обеих частей дробного уравнения на выражение, содержащее неизвестную величину .

K Упражнение. Решить уравнение

5 – x5 + 3х= 0 .
x – 1x 2 – 1

L Неправильное решение.

Умножим все члены уравнения на х 2 – 1 и получим:

Комментарий . Был приобретен посторонний корень х = 1, в чем можно убедиться с помощью проверки .

J Правильный ответ: х = 0.

Потеря корней в тригонометрических уравнениях

Появление посторонних корней может быть вызвано сокращением дроби на множитель, содержащий неизвестную величину .

K Упражнение. Решить уравнение

L Неправильное решение.

Заметим, что х 2 – 81 = (x – 9) (x + 9) и произведем сокращение дроби на x – 9 . Имеем:

Комментарий . Был приобретен посторонний корень х = 9 .

J Правильный ответ: решений нет.

Потеря корней в тригонометрических уравнениях

Приведение подобных слагаемых с неизвестным в знаменателе, в том случае, если они взаимно уничтожаются, также может привести к приобретению постороннего корня.

K Упражнение. Решить уравнение

х 2 – 81
2+ х 2 –2– 4х = 0 .
3х 23х 2

L Неправильное решение.

После приведения подобных слагаемых получим:

Комментарий . Был приобретен посторонний корень х = 0 .

J Правильный ответ: 4 .

Заметим, что аналогичная ситуация может сложиться и для слагаемых, содержащих переменную под знаком корня или под знаком логарифма.

Потеря корней в тригонометрических уравнениях

Очень часто посторонние корни появляются при возведении в четную степень обеих частей уравнения . Рассмотрим следующее иррациональное уравнение и на его примере – процесс появления посторонних корней.

K Упражнение. Решить уравнение √ х + 3 + √ 7 – х = 2 .

L Неправильное решение.

И число –2 , и число 6 содержатся в области допустимых значений переменной х , значит, являются решениями исходного уравнения.

Комментарий . Оба корня посторонние и были приобретены в процессе решения. Как же это произошло? Дело вот в чем. В процессе решения с помощью возведения в квадрат и элементарных преобразований мы перешли от уравнения

Последнему уравнению число –2 удовлетворяет, после подстановки получаем верное равенство 1 = 1 . Предыдущее же уравнение при подстановке –2 дает ложное равенство 1 = –1 , которое стало верным именно в результате возведения в квадрат, ведь 1 2 = (–1) 2 . Число –2 является корнем второго уравнения, для первого – посторонний корень. А вот число 6 не является корнем ни одного из них.

Шестерка выходит на арену при переходе от уравнения

которое уже имеет один корень –2 , к уравнению

Теперь возведение в квадрат превращает ложное равенство 2 = –2 в истинное равенство 4 = 4 , которые соответствуют этим уравнениям для случая х = 6 . Для последнего уравнения 6 – истинный корень, а для предпоследнего – ложный. И вот, путем преобразований мы получаем уравнение

для которого числа –2 и 6 — самые настоящие корни, а для исходного — посторонние. Два раза мы применяли возведение в квадрат и каждый раз приобретали посторонний корень, каждый из которых благополучно преодолел фильтр ОДЗ. В данном случае проверка обязательна.

J Правильный ответ: решений нет.

Необходимо помнить, что если область допустимых значений неизвестного найдена и при решении уравнения получены корни, принадлежащие ей, то проверка корней не нужна, только если при этом в процессе решения все преобразования были тождественными.

Потеря корней в тригонометрических уравнениях

Если при решении уравнения используется тот факт, что произведение равно нулю, когда хотя бы один из множителей равен нулю , прежде чем писать ответ, необходимо убедиться, что все найденные корни удовлетворяют условию.

K Упражнение. Решить уравнение ( x – 5) (х + 2) √ х – 3 = 0 .

L Неправильное решение.

Перейдем от данного уравнения у совокупности уравнений:

Комментарий . Число –2 обращает подкоренное выражение х – 3 в отрицательное число, а значит не может быть корнем уравнения.

J Правильный ответ: 5 и 3 .

Потеря корней в тригонометрических уравнениях

Часто причиной изменения множества корней уравнения во время его преобразования является применение равенств, правая и левая части которых имеют разные области определения . Таких равенств много, вот некоторые из них:

x = x · y
y
tg ( x + y ) =tg x + tg y
1 – tg x · tg y
sin 2 x =2 tg x
1 + tg 2 x

В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области выражения, стоящего в левой части. Поэтому использование этих равенств слева направо может привести к потере корней, а справа налево – к появлению посторонних корней .

L Неправильное решение.

так как х ≥ 3 , то |х – 1| = х – 1 и

Комментарий . Применение формулы √ х · y = √ х · √ y привело к потере корня x = 1 . И вот почему. Исходное уравнение имеет область допустимых значений ∪[3; +∞) , а вот уже ОДЗ уравнения (left| x-1right|cdot sqrt=x-1) – только [3; +∞) , что и привело к потере 1 .

Можем порекомендовать возвести обе части исходного уравнения в квадрат. Это может привести к появлению посторонних корней, избавиться от которых проверкой, как правило, проще, чем заниматься поисками потерянных корней.

J Правильное решение.

(left(x-1 right)^2cdot left(x-3 right)=left(x-1 right)^2;)

(left(x-1 right)^2cdot left(x-3 right)-left(x-1 right)^2=0;)

(left(x-1 right)^2cdot left(x-4 right)=0;)

Проверкой убеждаемся, что оба корня действительные.

Ошибки, связанные с заменой переменной

При решении некоторых уравнений достаточно удачным является метод замены переменной . Но применение этого метода учащиеся осуществляют не всегда правильно.

Так необходимо помнить, что при наличии нескольких степеней заменять новой переменной надо ту, у которой показатель наименьший .

K Упражнение. Решить уравнение (5 left(x-3 right)^-6=left(x-3 right)^.)

L Неправильное решение.

Сделав замену ( left(x-3 right)^=t), считают, что ( left(x-3 right)^=t^2) и уравнение переписывают в виде 5t 2 – t – 6 = 0 , после чего, конечно, верный результат уже не получить.

J Правильное решение.

Верный результат можно получить, сделав замену ( left(x-3 right)^=t), тогда ( left(x-3 right)^=t^2) с продолжением:

Потеря корней в тригонометрических уравнениях

Правильно сделав замену и верно найдя значение вспомогательной переменной, учащиеся часто допускают ошибку, используя не то равенство, которым вспомогательная переменная вводилась .

K Упражнение. Решить уравнение х + 4 √ x – 5 = 0 .

L Неправильное решение.

Комментарий . После нахождения значений вспомогательной переменной t для нахождения х следовало использовать подстановку √ x = t , а не x = t 2 .

J Правильное решение.

Потеря корней в тригонометрических уравнениях

При решении иррациональных уравнений учащиеся чаще всего применяют метод возведения в соответствующую степень. В результате этого решения иррациональных уравнений получаются громоздкими и не всегда доводятся до конца .

K Упражнение. Решить уравнение (x^2-4x-sqrt=6.)

L Неправильное (нерациональное) решение.

Чаще всего данное уравнение начинают решать так:

Нередко продолжения решения не следует, так как с полученным уравнением четвертой степени справится не каждый.

Комментарий . В качестве альтернативы можно предложить способ введения новой переменной.

J Правильное решение.

и исходное уравнение принимает вид:

А дальше все просто:

Комментарий . Числа –2 и 6 не подвергались проверке осознанно. В данном случае после возведения в квадрат не могли появиться посторонние корни, так как и квадратный корень, и подкоренное выражение после возведения в квадрат заведомо равны положительным числам.

Ошибки, связанные с использованием модуля

При решении уравнений, в тех случаях, когда необходимо использовать понятия модуля и арифметического корня , допускаются серьезные ошибки, связанные либо с незнанием, либо с непониманием этих понятий.

K Упражнение 1. Решить уравнение (sqrt=9.)

L Неправильное решение.

J Правильное решение.

K Упражнение 2. Решить уравнение (sqrt=x+3.)

L Неправильное решение.

Ответ: корнем данного уравнения является любое действительное число.

J Правильное решение.

Потеря корней в тригонометрических уравнениях

Учитывая, что решение уравнений, содержащих модуль, часто вызывает затруднения, приведем полное и развернутое решение одного из таких уравнений.

K Упражнение. Решить уравнение |x – 3| + |x –4| = 1 .

J Правильное решение.

Находим нули модулей, для |х – 3| это 3 , для |x – 4| это 4 , и разбиваем ими область допустимых значений неизвестного на числовые промежутки:

На каждом из этих промежутков исходное уравнение принимает свой вид.

1) при х ∈ (–∞; 3) исходное уравнение принимает вид:

так как 3 ∉ (–∞; 3 ) , то на этом промежутке решений нет;

2) при х ∈ [3; 4) исходное уравнение принимает вид:

что является истинным тождеством; значит, каждое число рассматриваемого промежутка [3; 4) является решением уравнения;

3) при х ∈ [4; +∞) исходное уравнение принимает вид:

так как 4 ∈ [4; +∞) , то 4 – корень уравнения.

Так как [3; 4)∪ = [3; 4] , то корнями исходного уравнения являются все числа числового промежутка [3; 4] .

Подбор корней без обоснования

К ошибочным решениям можно отнести и верный подбор корня заданного уравнения, иногда просто угадывание, без доказательства его единственности .

K Упражнение. Решить уравнение х (х + 1) (х + 2) (х + 3) = 24 .

L Неправильное решение.

Подбором находят корень х = 1 из разложения 24 = 1 · 2 · 3 · 4.

Комментарий . Был подобран корень х = 1 , но не обнаружен еще один корень х = –4 , который соответствует разложению 24 = –4 · (–3) · (–2) · (–1) . Но даже если и второй корень успешно подобран, но не обосновано отсутствие других корней, то считать такое решение уравнения правильным нельзя.

J Правильное решение.

введем новую переменную x 2 + 3х + 1 = t , тогда

1) x 2 + 3х + 1 = –5, x 2 + 3х + 6 = 0, решений нет;

Потеря корней в тригонометрических уравнениях

Наиболее распространенным методом доказательства единственности корня нестандартного уравнения является использование свойства монотонности входящих в уравнение функций . Часто при этом используется производная.

K Упражнение. Решить уравнение x 11 + 5х – 6 = 0 .

L Неправильное решение.

Методом подбора находим корень уравнения х = 1 .

Комментарий . Не приведено обоснование единственности подобранного корня уравнения.

J Правильное решение.

Корень х = 1 легко угадывается, а производная левой части равна 11x 10 + 5 и положительна на всей числовой оси. Отсюда следует монотонность функции у = x 11 + 5х – 6 , что и доказывает единственность подобранного корня.

Ошибки в логарифмических и показательных уравнениях

Для решения логарифмических и показательных уравнений используются специальные приемы, основанные на свойствах логарифмов и степеней. Рассмотрим связанные с применением этих приемов ошибки.

При решении уравнений, которые можно свести к равенству степеней с одинаковыми основаниями или с одинаковыми показателями , не всегда делаются правильные выводы.

K Упражнение 1. Решить уравнение (log7 x) 1 /3 = 1 .

L Неправильное решение.

Так как при одинаковых основаниях показатели не равны, то равенство степеней невозможно, а, значит, корней нет.

Ответ: корней нет.

J Правильное решение.

Возведем в куб обе части уравнения, тогда

K Упражнение 2. Решить уравнение (х + 5) х 2 + х – 2 = 1 .

L Неправильное решение.

Комментарий . Потерян корень х = –4 . Избежать этого можно было и при данном способе решения уравнения, если учесть, что степень равна 1 не только в случае нулевого показателя, но и в случае основания равного 1 при произвольном показателе. И тогда в дополнение к приведенному решению имеем:

J Правильное решение.

Прологарифмируем обе части уравнения по некоторому основанию, например 10, при условии х > 5 , тогда

Необходимо помнить, что:

из равенства степеней, основания которых равны единице, не следует обязательное равенство показателей этих степеней;

степенно–показательное уравнение предпочтительно решать путем логарифмирования.

Потеря корней в тригонометрических уравнениях

При решении логарифмических уравнений часто приходится применять свойства логарифмов с одинаковыми основаниями . При применении этих свойств учащиеся часто допускают ошибки.

L Неправильное решение.

Комментарий . В решении допущены две серьезные ошибки: во-первых, произведение логарифмов двух чисел заменено логарифмом произведения этих чисел; во-вторых, при решении уравнения 3х 2 = 81x потерян корень х = 0 (этот корень, конечно, не является корнем исходного уравнения, что не оправдывает его потерю).

J Правильное решение.

K Упражнение 2. Решить уравнение lg x 2 = 4 .

L Неправильное решение.

J Правильное решение 1.

2lg |x| = 4; lg | x| = 2; |x| = 100; x = ±100.

J Правильное решение 2.

lg x 2 = lg 10000; x 2 = 10000; x = ±100.

Потеря корней в тригонометрических уравнениях

Большие затруднения у многих учащихся возникают при выполнении действий над логарифмами с разными основаниями , так как учащиеся либо не умеют пользоваться соответствующими формулами, либо не знают их.

Следует помнить, что переход к логарифму с другим основанием может привести как к приобретению посторонних корней, так и к потере корней .

K Упражнение 1. Решить уравнение (left(log_5 +2 right)<log _>^2 ;x=0.)

L Неправильное решение.

(left(1 +2 log _xright)log _x=0;)

Комментарий . Преобразование логарифма с основание х в логарифм с основанием 5 привело к появлению постороннего корня, так как произошло расширение ОДЗ.

J Правильное решение.

Приведенное выше решение следует дополнить указанием области допустимых значений неизвестного в исходном уравнении. Это объединение числовых промежутков (0; 1)∪(1; +∞) . И указанием того факта, что 1 ∉ (0; 1)∪(1; +∞) , а, значит, не является корнем.

K Упражнение 2. Решить уравнение (20log_sqrt+ 7log_x^3-3log _x^2=0.)

L Неправильное решение.

Комментарий . В приведенном решении потерян корень, и вот почему. Был выполнен переход к логарифму с основанием х . Это вызвало изменения в ОДЗ неизвестного. Одно из таких изменений – это х ≠ 1 . Поэтому число 1 , как возможный корень исходного уравнения, следует рассмотреть отдельно.

J Правильное решение.

Приведенное выше решение нужно дополнить лишь проверкой того, не является ли 1 корнем уравнения. Подставляем 1 в исходное уравнение и убеждаемся, что 1 – корень.

Ошибки в тригонометрических уравнениях

Выделение в отдельный подраздел тригонометрических уравнений связано стем, что при их решении применяются не только алгебраические методы. Рассмотрим наиболее типичные ошибки, которые допускают учащиеся при решении тригонометрических уравнений.

Часто можно встретить неправильную запись решения тригонометрического уравнения или лишь частное решение .

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Типичные ошибки в решении задания С1(потеря корней, появление «посторонних» корней)
материал для подготовки к егэ (гиа) по алгебре (11 класс) по теме

Потеря корней в тригонометрических уравнениях

В презентации для подготовки к ЕГЭ по математике представлены решения двух заданий (тригонометрических уравнений), где подробно рассмотрены возможности появления посторонних корней и потери корней при различных преобразованиях. Это типичные ошибки в решении учащихся.Презентацию можно использовать для интерактивной доски.

Видео:Учимся объединять корни тригонометрического уравнения. Задание 12 ЕГЭ профильСкачать

Учимся объединять корни тригонометрического уравнения. Задание 12 ЕГЭ профиль

Скачать:

ВложениеРазмер
tipichnye_oshibki_v_reshenii_zadaniya_s1.pptx230.52 КБ

Предварительный просмотр:

Видео:Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

Подписи к слайдам:

Типичные ошибки в решении задания С1 ЕГЭ по математике (потеря корней, появление «посторонних» корней) Учитель математики МБОУ СОШ № 143 г.Красноярска Князькина Т. В.

Первое задание: а) Решите уравнение: б ) Найдите все корни на промежутке [ ] При решении уравнения попытаемся представить тангенс суммы двух углов по формуле Получилось: И – внимание! – потеря корня!

Смотрите внимательно: после этого преобразования мы получили отдельно стоящий tgx . Но tgx не определен при . А в исходном уравнении x вполне мог быть равен . То есть, выполняя это невинное преобразование, мы сузили ОДЗ . Поэтому, выполняя преобразование нужно следить за тем, что происходит с областью допустимых значений.

Итак, мы идем другим путем. Запишем tgx и ctgx через sin и cos : Используем формулы синуса и косинуса суммы:

Разделим числитель и знаменатель дроби в левой части уравнения на : Приведем левую часть уравнения к общему знаменателю : Перенесем все влево:

Вынесем за скобку общий множитель : Приведем выражение в скобках к общему знаменателю : Знаменатель дроби не равен нулю, то есть и

Произведение двух множителей равно нулю, если хотя бы один из них равен нулю : или 1. — вот он, потерянный корень ! 2. Раскроем скобки, приведем подобные члены :

Итак, мы получили два решения:

б) Найдем корни, принадлежащие промежутку [ ]: ]:

На рисунке красными точками обозначены решения уравнения; синей дугой обозначен промежуток, которому принадлежат корни ; угловая величина сиреневой дуги равна дуги равна Двигаясь из точки , мы встречаем на пути , Это и есть корни уравнения, принадлежащие промежутку [ ]. не принадлежит заданному промежутку.

Мы видим, что корень не принадлежит заданному промежутку . Ответ: а) б) , ,

И второе задание : а) Решите уравнение: б) Найдите корни уравнения, принадлежащие промежутку [ ] Засада в этом уравнении такая: когда мы ищем ОДЗ, то записываем и Будет ошибкой записать ОДЗ : Нельзя забывать, что не определен при , то есть в конечном итоге мы получаем такую ОДЗ:

Собственно, больше никаких сложностей в этом уравнении нет . Умножим обе части на :

Отсюда: или И вот в этом месте важно не пропустить, что корень уравнения – посторонний корень, так как не входит в ОДЗ исходного уравнения ! Но у нас еще есть корни уравнения или

Осталось выбрать корни, принадлежащие промежутку [ ] На рисунке красными точками на зеленой окружности обозначены решения уравнения; красной дугой обозначен промежуток, которому принадлежат корни; угловая величина сиреневой дуги равна

Двигаясь из точки мы встречаем на пути – это и есть корень уравнения, принадлежащий промежутку . Ответ: а) или б)

Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 класс

По теме: методические разработки, презентации и конспекты

Типичные ошибки при выполнении заданий части С теста ЕГЭ по химии

Каждый сдающий ЕГЭ по химии должен быть готов к тому, что на выполнение экзаменационной рабо­ты, состоящей из трех частей и включающей в себя 45 заданий, отводится 3 астрономических часа, или 180 мину.

Потеря корней в тригонометрических уравнениях

ЕГЭ по ОБЩЕСТВОЗНАНИЮ: Типичный ошибки при выполнении задания 27

Рекомендиции по выполнению задания 27.

Методические приемы решения заданий части С: типичные ошибки учащихся.

В заданиях Части 2 сделан акцент:на проверку владения алгебраическим аппаратом;на проверку освоения базовых идей математического анализа;на проверку умения логически грамотно излагать свои аргументы;н.

Потеря корней в тригонометрических уравнениях

Самостоятельная работа на тему «Комплекс уравнений, при решении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их потере, с анализом процесса решения»

Вашему вниманию предлагаю самостоятельную работу на тему «Комплекс уравнений, при ре​шении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их.

Потеря корней в тригонометрических уравнениях

Самостоятельная работа «Комплекс уравнений, при решении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их потере, с анализом процесса решения»

Работа в помощь слушателям курсов преподавания алгебры.

Потеря корней в тригонометрических уравнениях

Конспект урока по теме «О типичных ошибках при решении логарифмических уравнений и неравенств»

Даннная разработка может быть интересна для учителей, которые хотят обратить внимание учащихся на типичные ошибки при решении логарифмических уравненияхи неравенств.

Потеря корней в тригонометрических уравнениях

Доклад на районном семинаре учителей иностранных языков на тему «Типичные ошибки при выполнении заданий С3 и С4 ЕГЭ по английскому языку»

Типичные ошибка при выполнении заданий С3 и С4 ЕГЭ по английскому языку и меры, приминяемые на уроках английского языка для их предотвращения.

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Методы решения тригонометрических уравнений.

Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Потеря корней в тригонометрических уравнениях

Видео:3 СПОСОБА ОТБОРА КОРНЕЙ В ЗАДАНИИ #12 (по окружности, неравенством и подбором)Скачать

3 СПОСОБА ОТБОРА КОРНЕЙ В ЗАДАНИИ #12 (по окружности, неравенством и подбором)

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Потеря корней в тригонометрических уравнениях

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Потеря корней в тригонометрических уравнениях

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Потеря корней в тригонометрических уравнениях

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Потеря корней в тригонометрических уравнениях

Видео:Отбор корней в тригонометрических уравнениях | Математика ЕГЭ 10 класс | УмскулСкачать

Отбор корней в тригонометрических уравнениях | Математика ЕГЭ 10 класс | Умскул

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Потеря корней в тригонометрических уравнениях

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Потеря корней в тригонометрических уравненияхи sin Потеря корней в тригонометрических уравнениях( здесь Потеря корней в тригонометрических уравнениях— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Потеря корней в тригонометрических уравнениях

Потеря корней в тригонометрических уравнениях

Видео:Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математикеСкачать

Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математике

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

🔥 Видео

Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6Скачать

Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6

25 Равносильность уравнений Проверка корней Потеря корней при решении уравненияСкачать

25  Равносильность уравнений Проверка корней  Потеря корней при решении уравнения

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Выборка с помощью окружностиСкачать

Выборка с помощью окружности

Тригонометрия 8. Отбор корнейСкачать

Тригонометрия 8. Отбор корней
Поделиться или сохранить к себе: