Парная линейная регрессия — это зависимость между одной переменной и средним значением другой переменной. Чаще всего модель записывается как $y=ax+b+e$, где $x$ — факторная переменная, $y$ — результативная (зависимая), $e$ — случайная компонента (остаток, отклонение).
В учебных задачах по математической статистике обычно используется следующий алгоритм для нахождения уравнения регрессии.
- Выбор модели (уравнения). Часто модель задана заранее (найти линейную регрессию) или для подбора используют графический метод: строят диаграмму рассеяния и анализируют ее форму.
- Вычисление коэффициентов (параметров) уравнения регрессии. Часто для этого используют метод наименьших квадратов.
- Проверка значимости коэффициента корреляции и параметров модели (также для них можно построить доверительные интервалы), оценка качества модели по критерию Фишера.
- Анализ остатков, вычисление стандартной ошибки регрессии, прогноз по модели (опционально).
Ниже вы найдете решения для парной регрессии (по рядам данных или корреляционной таблице, с разными дополнительными заданиями) и пару задач на определение и исследование коэффициента корреляции.
- Примеры решений онлайн: линейная регрессия
- Простая выборка
- Корреляционная таблица
- Коэффициент корреляции
- Задача №1 Построение уравнения регрессии
- Требуется:
- Решение:
- Построение линейной модели регрессии по данным эксперимента
- п.1. Результативные и факторные признаки
- Линейная модель парной регрессии
- п.3. Метод наименьших квадратов, вывод системы нормальных уравнений
- п.4. Оценка тесноты связи
- 🔥 Видео
Видео:Эконометрика. Линейная парная регрессияСкачать
Примеры решений онлайн: линейная регрессия
Простая выборка
Пример 1. Имеются данные средней выработки на одного рабочего Y (тыс. руб.) и товарооборота X (тыс. руб.) в 20 магазинах за квартал. На основе указанных данных требуется:
1) определить зависимость (коэффициент корреляции) средней выработки на одного рабочего от товарооборота,
2) составить уравнение прямой регрессии этой зависимости.
Пример 2. С целью анализа взаимного влияния зарплаты и текучести рабочей силы на пяти однотипных фирмах с одинаковым числом работников проведены измерения уровня месячной зарплаты Х и числа уволившихся за год рабочих Y:
X 100 150 200 250 300
Y 60 35 20 20 15
Найти линейную регрессию Y на X, выборочный коэффициент корреляции.
Пример 3. Найти выборочные числовые характеристики и выборочное уравнение линейной регрессии $y_x=ax+b$. Построить прямую регрессии и изобразить на плоскости точки $(x,y)$ из таблицы. Вычислить остаточную дисперсию. Проверить адекватность линейной регрессионной модели по коэффициенту детерминации.
Пример 4. Вычислить коэффициенты уравнения регрессии. Определить выборочный коэффициент корреляции между плотностью древесины маньчжурского ясеня и его прочностью.
Решая задачу необходимо построить поле корреляции, по виду поля определить вид зависимости, написать общий вид уравнения регрессии Y на Х, определить коэффициенты уравнения регрессии и вычислить коэффициенты корреляции между двумя заданными величинами.
Пример 5. Компанию по прокату автомобилей интересует зависимость между пробегом автомобилей X и стоимостью ежемесячного технического обслуживания Y. Для выяснения характера этой связи было отобрано 15 автомобилей. Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов.
Корреляционная таблица
Пример 6. Найти выборочное уравнение прямой регрессии Y на X по заданной корреляционной таблице
Пример 7. В таблице 2 приведены данные зависимости потребления Y (усл. ед.) от дохода X (усл. ед.) для некоторых домашних хозяйств.
1. В предположении, что между X и Y существует линейная зависимость, найдите точечные оценки коэффициентов линейной регрессии.
2. Найдите стандартное отклонение $s$ и коэффициент детерминации $R^2$.
3. В предположении нормальности случайной составляющей регрессионной модели проверьте гипотезу об отсутствии линейной зависимости между Y и X.
4. Каково ожидаемое потребление домашнего хозяйства с доходом $x_n=7$ усл. ед.? Найдите доверительный интервал для прогноза.
Дайте интерпретацию полученных результатов. Уровень значимости во всех случаях считать равным 0,05.
Пример 8. Распределение 100 новых видов тарифов на сотовую связь всех известных мобильных систем X (ден. ед.) и выручка от них Y (ден.ед.) приводится в таблице:
Необходимо:
1) Вычислить групповые средние и построить эмпирические линии регрессии;
2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость:
А) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
Б) вычислить коэффициент корреляции, на уровне значимости 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y;
В) используя соответствующее уравнение регрессии, оценить среднюю выручку от мобильных систем с 20 новыми видами тарифов.
Коэффициент корреляции
Пример 9. На основании 18 наблюдений установлено, что на 64% вес X кондитерских изделий зависит от их объема Y. Можно ли на уровне значимости 0,05 утверждать, что между X и Y существует зависимость?
Пример 10. Исследование 27 семей по среднедушевому доходу (Х) и сбережениям (Y) дало результаты: $overline=82$ у.е., $S_x=31$ у.е., $overline=39$ у.е., $S_y=29$ у.е., $overline =3709$ (у.е.)2. При $alpha=0,05$ проверить наличие линейной связи между Х и Y. Определить размер сбережений семей, имеющих среднедушевой доход $Х=130$ у.е.
Видео:Парная регрессия: линейная зависимостьСкачать
Задача №1 Построение уравнения регрессии
Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).
Индекс розничных цен на продукты питания (х) | Индекс промышленного производства (у) | |
---|---|---|
1 | 100 | 70 |
2 | 105 | 79 |
3 | 108 | 85 |
4 | 113 | 84 |
5 | 118 | 85 |
6 | 118 | 85 |
7 | 110 | 96 |
8 | 115 | 99 |
9 | 119 | 100 |
10 | 118 | 98 |
11 | 120 | 99 |
12 | 124 | 102 |
13 | 129 | 105 |
14 | 132 | 112 |
Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
В) равносторонней гиперболы.
2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.
Решение:
1. Для расчёта параметров линейной регрессии
Решаем систему нормальных уравнений относительно a и b:
Построим таблицу расчётных данных, как показано в таблице 1.
Таблица 1 Расчетные данные для оценки линейной регрессии
№ п/п | х | у | ху | x 2 | y 2 | ||
---|---|---|---|---|---|---|---|
1 | 100 | 70 | 7000 | 10000 | 4900 | 74,26340 | 0,060906 |
2 | 105 | 79 | 8295 | 11025 | 6241 | 79,92527 | 0,011712 |
3 | 108 | 85 | 9180 | 11664 | 7225 | 83,32238 | 0,019737 |
4 | 113 | 84 | 9492 | 12769 | 7056 | 88,98425 | 0,059336 |
5 | 118 | 85 | 10030 | 13924 | 7225 | 94,64611 | 0,113484 |
6 | 118 | 85 | 10030 | 13924 | 7225 | 94,64611 | 0,113484 |
7 | 110 | 96 | 10560 | 12100 | 9216 | 85,58713 | 0,108467 |
8 | 115 | 99 | 11385 | 13225 | 9801 | 91,24900 | 0,078293 |
9 | 119 | 100 | 11900 | 14161 | 10000 | 95,77849 | 0,042215 |
10 | 118 | 98 | 11564 | 13924 | 9604 | 94,64611 | 0,034223 |
11 | 120 | 99 | 11880 | 14400 | 9801 | 96,91086 | 0,021102 |
12 | 124 | 102 | 12648 | 15376 | 10404 | 101,4404 | 0,005487 |
13 | 129 | 105 | 13545 | 16641 | 11025 | 107,1022 | 0,020021 |
14 | 132 | 112 | 14784 | 17424 | 12544 | 110,4993 | 0,013399 |
Итого: | 1629 | 1299 | 152293 | 190557 | 122267 | 1299,001 | 0,701866 |
Среднее значение: | 116,3571 | 92,78571 | 10878,07 | 13611,21 | 8733,357 | х | х |
8,4988 | 11,1431 | х | х | х | х | х | |
72,23 | 124,17 | х | х | х | х | х |
Среднее значение определим по формуле:
Cреднее квадратическое отклонение рассчитаем по формуле:
и занесём полученный результат в таблицу 1.
Возведя в квадрат полученное значение получим дисперсию:
Параметры уравнения можно определить также и по формулам:
Таким образом, уравнение регрессии:
Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.
Рассчитаем линейный коэффициент парной корреляции:
Связь прямая, достаточно тесная.
Определим коэффициент детерминации:
Вариация результата на 74,59% объясняется вариацией фактора х.
Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения .
,
следовательно, параметры уравнения определены правильно.
Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:
В среднем расчётные значения отклоняются от фактических на 5,01%.
Оценку качества уравнения регрессии проведём с помощью F-теста.
F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.
Fфакт определяется по формуле:
где n – число единиц совокупности;
m – число параметров при переменных х.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза.
Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
2. Степенная регрессия имеет вид:
Для определения параметров производят логарифмирование степенной функции:
Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наименьших квадратов:
Построим таблицу расчётных данных, как показано в таблице 2.
Таблица 2 Расчетные данные для оценки степенной регрессии
№п/п | х | у | lg x | lg y | lg x*lg y | (lg x) 2 | (lg y) 2 |
---|---|---|---|---|---|---|---|
1 | 100 | 70 | 2,000000 | 1,845098 | 3,690196 | 4,000000 | 3,404387 |
2 | 105 | 79 | 2,021189 | 1,897627 | 3,835464 | 4,085206 | 3,600989 |
3 | 108 | 85 | 2,033424 | 1,929419 | 3,923326 | 4,134812 | 3,722657 |
4 | 113 | 84 | 2,053078 | 1,924279 | 3,950696 | 4,215131 | 3,702851 |
5 | 118 | 85 | 2,071882 | 1,929419 | 3,997528 | 4,292695 | 3,722657 |
6 | 118 | 85 | 2,071882 | 1,929419 | 3,997528 | 4,292695 | 3,722657 |
7 | 110 | 96 | 2,041393 | 1,982271 | 4,046594 | 4,167284 | 3,929399 |
8 | 115 | 99 | 2,060698 | 1,995635 | 4,112401 | 4,246476 | 3,982560 |
9 | 119 | 100 | 2,075547 | 2,000000 | 4,151094 | 4,307895 | 4,000000 |
10 | 118 | 98 | 2,071882 | 1,991226 | 4,125585 | 4,292695 | 3,964981 |
11 | 120 | 99 | 2,079181 | 1,995635 | 4,149287 | 4,322995 | 3,982560 |
12 | 124 | 102 | 2,093422 | 2,008600 | 4,204847 | 4,382414 | 4,034475 |
13 | 129 | 105 | 2,110590 | 2,021189 | 4,265901 | 4,454589 | 4,085206 |
14 | 132 | 112 | 2,120574 | 2,049218 | 4,345518 | 4,496834 | 4,199295 |
Итого | 1629 | 1299 | 28,90474 | 27,49904 | 56,79597 | 59,69172 | 54,05467 |
Среднее значение | 116,3571 | 92,78571 | 2,064624 | 1,964217 | 4,056855 | 4,263694 | 3,861048 |
8,4988 | 11,1431 | 0,031945 | 0,053853 | х | х | х | |
72,23 | 124,17 | 0,001021 | 0,0029 | х | х | х |
Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии
№п/п | х | у | ||||
---|---|---|---|---|---|---|
1 | 100 | 70 | 74,16448 | 17,34292 | 0,059493 | 519,1886 |
2 | 105 | 79 | 79,62057 | 0,385112 | 0,007855 | 190,0458 |
3 | 108 | 85 | 82,95180 | 4,195133 | 0,024096 | 60,61728 |
4 | 113 | 84 | 88,59768 | 21,13866 | 0,054734 | 77,1887 |
5 | 118 | 85 | 94,35840 | 87,57961 | 0,110099 | 60,61728 |
6 | 118 | 85 | 94,35840 | 87,57961 | 0,110099 | 60,61728 |
7 | 110 | 96 | 85,19619 | 116,7223 | 0,11254 | 10,33166 |
8 | 115 | 99 | 90,88834 | 65,79901 | 0,081936 | 38,6174 |
9 | 119 | 100 | 95,52408 | 20,03384 | 0,044759 | 52,04598 |
10 | 118 | 98 | 94,35840 | 13,26127 | 0,037159 | 27,18882 |
11 | 120 | 99 | 96,69423 | 5,316563 | 0,023291 | 38,6174 |
12 | 124 | 102 | 101,4191 | 0,337467 | 0,005695 | 84,90314 |
13 | 129 | 105 | 107,4232 | 5,872099 | 0,023078 | 149,1889 |
14 | 132 | 112 | 111,0772 | 0,85163 | 0,00824 | 369,1889 |
Итого | 1629 | 1299 | 1296,632 | 446,4152 | 0,703074 | 1738,357 |
Среднее значение | 116,3571 | 92,78571 | х | х | х | х |
8,4988 | 11,1431 | х | х | х | х | |
72,23 | 124,17 | х | х | х | х |
Решая систему нормальных уравнений, определяем параметры логарифмической функции.
Получим линейное уравнение:
Выполнив его потенцирование, получим:
Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата . По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.
Связь достаточно тесная.
В среднем расчётные значения отклоняются от фактических на 5,02%.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
3. Уравнение равносторонней гиперболы
Для определения параметров этого уравнения используется система нормальных уравнений:
Произведем замену переменных
и получим следующую систему нормальных уравнений:
Решая систему нормальных уравнений, определяем параметры гиперболы.
Составим таблицу расчётных данных, как показано в таблице 3.
Таблица 3 Расчетные данные для оценки гиперболической зависимости
№п/п | х | у | z | yz | ||
---|---|---|---|---|---|---|
1 | 100 | 70 | 0,010000000 | 0,700000 | 0,0001000 | 4900 |
2 | 105 | 79 | 0,009523810 | 0,752381 | 0,0000907 | 6241 |
3 | 108 | 85 | 0,009259259 | 0,787037 | 0,0000857 | 7225 |
4 | 113 | 84 | 0,008849558 | 0,743363 | 0,0000783 | 7056 |
5 | 118 | 85 | 0,008474576 | 0,720339 | 0,0000718 | 7225 |
6 | 118 | 85 | 0,008474576 | 0,720339 | 0,0000718 | 7225 |
7 | 110 | 96 | 0,009090909 | 0,872727 | 0,0000826 | 9216 |
8 | 115 | 99 | 0,008695652 | 0,860870 | 0,0000756 | 9801 |
9 | 119 | 100 | 0,008403361 | 0,840336 | 0,0000706 | 10000 |
10 | 118 | 98 | 0,008474576 | 0,830508 | 0,0000718 | 9604 |
11 | 120 | 99 | 0,008333333 | 0,825000 | 0,0000694 | 9801 |
12 | 124 | 102 | 0,008064516 | 0,822581 | 0,0000650 | 10404 |
13 | 129 | 105 | 0,007751938 | 0,813953 | 0,0000601 | 11025 |
14 | 132 | 112 | 0,007575758 | 0,848485 | 0,0000574 | 12544 |
Итого: | 1629 | 1299 | 0,120971823 | 11,13792 | 0,0010510 | 122267 |
Среднее значение: | 116,3571 | 92,78571 | 0,008640844 | 0,795566 | 0,0000751 | 8733,357 |
8,4988 | 11,1431 | 0,000640820 | х | х | х | |
72,23 | 124,17 | 0,000000411 | х | х | х |
Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости
№п/п | х | у | ||||
---|---|---|---|---|---|---|
1 | 100 | 70 | 72,3262 | 0,033231 | 5,411206 | 519,1886 |
2 | 105 | 79 | 79,49405 | 0,006254 | 0,244083 | 190,0458 |
3 | 108 | 85 | 83,47619 | 0,017927 | 2,322012 | 60,61728 |
4 | 113 | 84 | 89,64321 | 0,067181 | 31,84585 | 77,1887 |
5 | 118 | 85 | 95,28761 | 0,121031 | 105,8349 | 60,61728 |
6 | 118 | 85 | 95,28761 | 0,121031 | 105,8349 | 60,61728 |
7 | 110 | 96 | 86,01027 | 0,10406 | 99,79465 | 10,33166 |
8 | 115 | 99 | 91,95987 | 0,071112 | 49,56344 | 38,6174 |
9 | 119 | 100 | 96,35957 | 0,036404 | 13,25272 | 52,04598 |
10 | 118 | 98 | 95,28761 | 0,027677 | 7,357059 | 27,18882 |
11 | 120 | 99 | 97,41367 | 0,016024 | 2,516453 | 38,6174 |
12 | 124 | 102 | 101,46 | 0,005294 | 0,291565 | 84,90314 |
13 | 129 | 105 | 106,1651 | 0,011096 | 1,357478 | 149,1889 |
14 | 132 | 112 | 108,8171 | 0,028419 | 10,1311 | 369,1889 |
Итого: | 1629 | 1299 | 1298,988 | 0,666742 | 435,7575 | 1738,357 |
Среднее значение: | 116,3571 | 92,78571 | х | х | х | х |
8,4988 | 11,1431 | х | х | х | х | |
72,23 | 124,17 | х | х | х | х |
Значения параметров регрессии a и b составили:
Связь достаточно тесная.
В среднем расчётные значения отклоняются от фактических на 4,76%.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.
Видео:Множественная регрессияСкачать
Построение линейной модели регрессии по данным эксперимента
п.1. Результативные и факторные признаки
Инвестиции в проект
Затраты на рекламу
По характеру зависимости признаков различают:
- Функциональную зависимость , когда каждому определенному значению факторного признака x соответствует одно и только одно значение результативного признака (y=f(x)).
- Статистическую зависимость , когда каждому определенному значению факторного признака x соответствует некоторое распределение (F_Y(y|x)) вероятностей значений результативного признака.
Например:
Функциональные зависимости: (y(x)=x^2+3, S(R)=pi R^2, V(a)=a^3)
Статистические зависимости: средний балл успеваемости в зависимости от потраченного на учебу времени, рост в зависимости от возраста, количество осадков в зависимости от времени года и т.п.
Линейная модель парной регрессии
Например:
Прогноз погоды, автоматическая диагностика заболевания по результатам обследования, распознавание отпечатка на сканере и т.п.
В принципе, все сегодняшние компьютерные «чудеса» по поиску, обучению и распознаванию основаны на статистических моделях.
Рассмотрим саму простую модель: построение прямой (Y=aX+b) на основе полученных данных. Такая модель называется линейной моделью парной регрессии .
Пусть Y — случайная величина, значения которой требуется определить в зависимости от факторной переменной X.
Пусть в результате измерений двух случайных величин X и Y был получен набор точек (left, x_iin X, y_iin Y).
Пусть (y*=y*(x)) — оценка значений величины Y на данном наборе (x_i). Тогда для каждого значения x случайной величиной является ошибка оценки: $$ varepsilon (x)=y*(x)-Y $$ Например, если полученный набор точек при размещении на графике имеет вид:
тогда разумно будет выдвинуть гипотезу, что для генеральной совокупности (Y=aX+b).
А для нашей выборки: (y_i=ax_i+b+varepsilon_i, i=overline)
т.к., каждая точка выборки может немного отклоняться от прямой.
Наша задача: на данном наборе точек (left) найти параметры прямой a и b и построить эту прямую так, чтобы отклонения (varepsilon_i) были как можно меньше.
п.3. Метод наименьших квадратов, вывод системы нормальных уравнений
Идея метода наименьших квадратов (МНК) состоит в том, чтобы найти такие значения a и b, для которых сумма квадратов всех отклонений (sum varepsilon_i^2rightarrow min) будет минимальной.
Т.к. (y_i=ax_i+b+varepsilon_i), сумма квадратов отклонений: $$ sum_^k varepsilon_i^2=sum_^k (y_i-ax_i-b)^2rightarrow min $$ Изучая производные, мы уже решали задачи на поиск экстремума (см. §50 данного справочника).
В данном случае нас интересует «двойной» экстремум, по двум переменным: $$ S(a,b)=sum_^k (y_i-ax_i-b)^2 $$ Сначала берем производную по a, считая b постоянной, и приравниваем её к 0: begin frac=fracsum_^k (y_i-ax_i-b)^2=sum_^k frac(y_i-ax_i-b)^2=\ =sum_^k 2(y_i-ax_i-b)cdot (-x_i)=-2sum_^k x_i(y_i-ax_i-b)=0 end Теперь то же самое делаем для b: begin frac=fracsum_^k (y_i-ax_i-b)^2=sum_^k frac(y_i-ax_i-b)^2=\ =sum_^k 2(y_i-ax_i-b)cdot (-1)=-2sum_^k (y_i-ax_i-b)=0 end Получаем систему: begin begin sum_^k x_i(y_i-ax_i-b)=0\ sum_^k (y_i-ax_i-b)=0 end \ begin sum_^k x_iy_i-asum_^k x_i^2-bsum_^k x_i=0\ sum_^k y_i-asum_^k x_i-bsum_^k 1=0 end end Переставим уравнения местами и запишем в удобном для решения виде.
Система нормальных уравнений для параметров парной линейной регрессии $$ begin asum_^k x_i+bk=sum_^k y_i\ asum_^k x_i^2+bsum_^k x_i=sum_^k x_iy_i end $$ |
Наши неизвестные – это a и b. И получена нами система двух линейных уравнений с двумя неизвестными, которую мы решаем методом Крамера (см. §48 справочника для 7 класса). begin triangle = begin sum_^k x_i & k\ sum_^k x_i^2 & sum_^k x_i end, triangle_a = begin sum_^k y_i & k\ sum_^k x_iy_i & sum_^k x_i end, triangle_b = begin sum_^k x_i & sum_^k y_i\ sum_^k x_i^2 & sum_^k x_iy_i end \ a=frac, b=frac end
Например:
Найдем и построим прямую регрессии для набора точек, представленных на графике выше. Общее число точек k=10.
Расчетная таблица:
(i) | (x_i) | (y_i) | (x_i^2) | (x_iy_i) |
1 | 0 | 3,86 | 0 | 0 |
2 | 0,5 | 3,25 | 0,25 | 1,625 |
3 | 1 | 4,14 | 1 | 4,14 |
4 | 1,5 | 4,93 | 2,25 | 7,395 |
5 | 2 | 5,22 | 4 | 10,44 |
6 | 2,5 | 7,01 | 6,25 | 17,525 |
7 | 3 | 6,8 | 9 | 20,4 |
8 | 3,5 | 7,79 | 12,25 | 27,265 |
9 | 4 | 9,18 | 16 | 36,72 |
10 | 4,5 | 9,77 | 20,25 | 43,965 |
∑ | 22,5 | 61,95 | 71,25 | 169,475 |
Получаем: begin sum_^k x_i=22,2; sum_^k x_i^2=71,25; sum_^k x_iy_i=169,475; sum_^k y_i=61,95\ triangle = begin 22,2 & 10\ 71,25 & 22,2 end=22,2^2-10cdot 71,25=-206,25\ triangle_a = begin 61,95 & 10\ 169,475 & 22,2 end=61,95cdot 22,2-10cdot 169,475=-300,875\ triangle_b = begin 22,2 & 61,95\ 71,25 & 169,475 end=22,2cdot 169,475-61,95cdot 71,25=-600,75 \ a=frac=fracapprox 1,46, b=frac=fracapprox 2,91 end
Уравнение прямой регрессии: $$ Y=1,46cdot X+2,91 $$ |
п.4. Оценка тесноты связи
Найденное уравнение регрессии всегда дополняют расчетом показателя тесноты связи.
Введем следующие средние величины: $$ overline=frac1ksum_^k x_i, overline=frac1ksum_^k y_i, overline=frac1ksum_^k x_i^2, overline=frac1ksum_^k y_i^2, overline=frac1ksum_^k x_iy_i $$ Дисперсия каждой из случайных величин x и y: $$ D_x=overline-(overline)^2, D_y=overline-(overline)^2 $$ СКО каждой из случайных величин: $$ sigma_x=sqrt<overline-(overline)^2>, sigma_y=sqrt<overline-(overline)^2>, $$
Значения линейного коэффициента корреляции находится в интервале $$ -1leq r_leq 1 $$ Чем ближе (|r_|) к единице, тем сильнее линейная связь между x и y.
Отрицательные значения (|r_|) соответствуют обратной связи: убывающей прямой с отрицательным угловым коэффициентом.
Для оценки тесноты связи на практике пользуются шкалой Чеддока :
🔥 Видео
Множественная регрессия в ExcelСкачать
Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать
Множественная регрессия в Excel и мультиколлинеарностьСкачать
Эконометрика Линейная регрессия и корреляцияСкачать
Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать
Линейная регрессияСкачать
Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.Скачать
Математика #1 | Корреляция и регрессияСкачать
Линейная парная регрессия в Eviews(англ.интерфейс)Скачать
Эконометрика. Множественная регрессия и корреляция.Скачать
Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать
Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
Регрессия в ExcelСкачать
Расчет коэффициента корреляции в ExcelСкачать
Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать
Как вычислить линейный коэффициент корреляции по таблице? Корреляционное поле и прямая регрессииСкачать
РЕАЛИЗАЦИЯ ЛИНЕЙНОЙ РЕГРЕССИИ | Линейная регрессия | LinearRegression | МАШИННОЕ ОБУЧЕНИЕСкачать