Построить кривую заданную уравнением в полярной системе координат p 2sin2фи

Построить кривую заданную уравнением в полярной системе координат p 2sin2фи

Построим график функции в полярных координатах r=r(φ),
где 0 Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x|) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x exp(x) Функция — экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x ctg(x) Функция — Котангенс от x arcctg(x) Функция — Арккотангенс от x arcctgh(x) Функция — Гиперболический арккотангенс от x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x gamma(x) Гамма-функция LambertW(x) Функция Ламберта x! или factorial(x) Факториал от x DiracDelta(x) Дельта-функция Дирака Heaviside(x) Функция Хевисайда Интегральные функции: Si(x) Интегральный синус от x Ci(x) Интегральный косинус от x Shi(x) Интегральный гиперболический синус от x Chi(x) Интегральный гиперболический косинус от x

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Видео:Полярная система координатСкачать

Полярная система координат

Задача 54737 построить кривую заданную уравнением в.

Условие

Построить кривую заданную уравнением в полярной системе координат p 2sin2фи

построить кривую заданную уравнением в полярной системе координат p=2sin2фи

Решение

Построить кривую заданную уравнением в полярной системе координат p 2sin2фи

Полярная система координат задается точкой отсчета О и лучом
( см. рис.)

Луч вращается на 360 ^(o) и заполняет всю координатную плоскость
хОу
Координатами в полярной системе координат являются угол φ и расстояние p

Так как расстояние p≥ 0, то и

sin 2φ ≥ 0 ⇒ 0 +2πk ≤ 2φ≤ π+2πk , k ∈ Z ⇒ 0 +πk ≤ φ≤ (π/2)+πk , k ∈ Z

Рассматриваем один оборот и поэтому
г рафик расположен на участках от 0^(o) до 90^(o) и от 180^(o) до 270^(o)

(φ в первой и в третьей четверти координатной плоскости хОу).

φ =10^(o) ⇒ p=2*sin20^(o)=2*(0,34) ≈ 0,7
Откладываем отрезок длины 1 на луче в 10^(o)
Получаем точку A

φ =15^(o) ⇒ p=2*sin30^(o)=2*(1/2)=1
Откладываем отрезок длины 1 на луче в 15^(o)
Получаем точку B

φ =22,5^(o) ⇒ p=2*sin45^(o)=2*(sqrt(2)/2)=sqrt(2)
Откладываем отрезок длины sqrt(2) на луче в 22,5^(o)

φ =30^(o) ⇒ p=2*sin60^(o)=2*(sqrt(3)/2)=sqrt(3)
Откладываем отрезок длины sqrt(3) на луче в 30^(o)

φ =45^(o) ⇒ p=2*sin90^(o)=2
Откладываем отрезок длины 2 на луче в 45^(o)
Получаем точку C

φ =60^(o) ⇒ p=2*sin120^(o)=2*(sqrt(3)/2)=sqrt(3)
Откладываем отрезок длины а*sqrt(3) на луче в 60^(o)
Получаем точку D

φ =75^(o) ⇒ p=2*sin150^(o)=2*(1/2)=1
Откладываем отрезок длины 1 на луче в 75^(o)
Получаем точку F

φ =90^(o) ⇒ p=2*sin180^(o)=0
Откладываем отрезок длины 0 на луче в 90^(o)
Получаем точку O

Cоединяем точки плавной линией, получаем лепесток в первой четверти системы координат хОу

Видео:Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Построить график в полярных координатах на плоскости

Данный калькулятор поможет построить график и кривые на плоскости в полярных координатах.
Полярная система координат — двухмерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом.
Полярная система координат задаётся лучом, который называют нулевым лучом, или полярной осью. Точка, из которой выходит этот луч, называется началом координат, или полюсом.

Примеры уравнений кривых в полярных координатах:
R=2*(1-cos theta) — кардиоида;
R=2*sin(4*theta) — полярная роза;
R=2+sin(3* theta) — трохоида;
R=9/(4-5*cos theta) — гипербола.

Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

Примеры решений: полярная система координат

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые в полярной системе координат: табуляция функции, построение графика, переход к уравнению в декартовой системе координат т.п.

Основные этапы при работе с кривой, заданной в полярной системе координат, такие:

  • 1. Построить полярную систему координат (изобразить полюс, полярную ось и угловые направления). Обычно строят вспомогательные лучи через $pi/6$ или $pi/8$ радиан, для большинства кривых этих точек (получается от $0$ до $2pi$ помещается 12 или 16 значений) вполне достаточно.
  • 2. Табулируем кривую: берем последовательно все углы $phi$ (см. выше): $0$, $pi/8$, $pi/4$, $3pi/8$. и в каждой точке вычисляем значение $rho(phi)$. Заносим значения в таблицу.
  • 3. Берем начерченную в первом пункте полярную систему координат и наносим точки. На полярной оси отмеряем значние $rho(0)$, на луче $pi/8$ — $rho(pi/8)$ и так далее.
  • 4. Соединяем все точки плавной линией. Получается искомая кривая. Для проверки правильности можно построить дополнительно график с помощью онлайн-сервисов.
  • 5. Если требуется найти уравнение кривой в декартовой системе координат, подставляем подходящие формулы $rho=sqrt$, $x=rhocos phi$, $y=rhosin phi$ и преобразуем.

Более подробно — в примерах ниже. Удачного изучения!

Видео:Видеоурок "Полярная система координат"Скачать

Видеоурок "Полярная система координат"

Полярная система координат: решения онлайн

Задача 1. Построить следующие кривые в полярной системе координат: Лемниската Бернулли $rho^2=2cos 2phi$ (полюс помещен в точку О).

Задача 2. Построить по точкам кривую, заданную уравнением в полярной системе координат $rho=2sin 2phi$. Найти уравнение кривой в прямоугольной системе координат, начало которой совмещено с полюсом, а положительная полуось $Ox$ с полярной осью.

Задача 3. Дана линия своим уравнением в полярной системе координат $r=8 sin phi$. Требуется:
1) построить линию по точкам, давая $phi$ значения через $pi/6$, начиная с 0 до $2pi$.
2) Найти уравнение этой линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью.

Задача 4. Линия задана уравнением $r=18/(4+5cos phi)$ в полярной системе координат. Требуется:
Построить линию по точкам, начиная от 0 до $2pi$ и придавая $phi$ значения через промежуток $pi/8$.
Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.
Назвать линию, найти координаты фокусов и эксцентриситет.

🎥 Видео

Глаза гипножабы и площадь фигур в полярной системе координатСкачать

Глаза гипножабы и площадь фигур в полярной системе координат

Полярная система координат.Скачать

Полярная система координат.

Полярная система координатСкачать

Полярная система координат

Площадь фигуры, заданной в полярной системе координатСкачать

Площадь фигуры, заданной в полярной системе координат

Занятие 01. Часть 3. Полярная система координатСкачать

Занятие 01. Часть 3. Полярная система координат

Линии в полярных координатах и параметрически заданныеСкачать

Линии в полярных координатах и параметрически заданные

Построение графика функции в полярных координатахСкачать

Построение графика функции в полярных координатах

Кривые, заданные параметрическиСкачать

Кривые, заданные параметрически

§30 Уравнения кривых второго порядка в полярных координатахСкачать

§30 Уравнения кривых второго порядка в полярных координатах

Способы задания функций. Неявная функция. Функция заданная параметрически и в полярных координатах.Скачать

Способы задания функций. Неявная функция. Функция заданная параметрически и в полярных координатах.

Полярная система координат, построение графика, примерыСкачать

Полярная система координат, построение графика, примеры

Площади 12Скачать

Площади 12

Найти производную y'(x), если кривая задана в полярных координатахСкачать

Найти производную y'(x), если кривая задана в полярных координатах

Как построить кривую, заданную параметрическиСкачать

Как построить кривую, заданную параметрически

§52 Полярная система координатСкачать

§52 Полярная система координат

Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Лекция 22. Декартова система координат на плоскости и полярная система координат
Поделиться или сохранить к себе: