Построить график затухающих колебаний данного уравнения

Затухающие колебания

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Определение затухающих колебаний

Механическое движение всегда сопровождается трением. Трение приводит к рассеянию (диссипации) механической энергии. Диссипация энергии имеется в любых не идеализированных колебательных системах, она вызывает затухание собственных колебаний.

Затухающими колебаниями называют колебания, амплитуда которых постепенно уменьшается со временем из-за потерь энергии колебательной системой.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Уравнение колебаний пружинного маятника с затуханием

Иногда, если тело движется в веществе, силу сопротивления ($<overline>_

$), которая действует на рассматриваемое тело, при маленьких скоростях его движения, считают прямо пропорциональной скорости ($overline$):

[<overline>_

=-beta overlineleft(1right),]

где $beta $ — коэффициент сопротивления.

Данную силу учитывают в уравнении второго закона Ньютона при описании движения. Так, уравнение, которое описывает линейные колебания по вертикали (колебания по оси X) пружинного маятника, учитывающее силу трения принимает вид:

где $dot=v_x.$ Принимая во внимание равенства:

(где $_0$- циклическая частота свободных незатухающих колебаний (собственная частота колебаний при $gamma $=0) той же колебательной системы; $gamma $ — коэффициент затухания) уравнение колебаний пружинного маятника с затуханием (2) преобразуем к виду:

Малые собственные колебания, затухающие вследствие сопротивления среды в любой физической системе (математический маятник, физический маятник, электрические колебания . ) описывают при помощи уравнения формы (4).

Уравнение затухающих колебаний имеет точное решение:

где $omega =sqrt<^2_0-^2>$; $A_0$ — начальная амплитуда колебаний, задаваемая начальными условиями; $varphi $ — постоянная из начальных условий. При $gamma ll _0$, $omega approx _0$, параметр $A_0e^$ можно считать медленно изменяющейся во времени амплитудой колебаний.

Затухание колебаний по экспоненте связано с тем, что силу сопротивления мы приняли пропорциональной скорости. Если использовать другую зависимость силы трения от скорости, то закон затухания изменится.

Видео:70. Затухающие колебанияСкачать

70. Затухающие колебания

Диссипация энергии при затухающих колебаниях

Пусть затухание мало, при этом потеря энергии колебательной системой за один период много меньше, чем энергия колебаний.

Рассеяние энергии за период колебаний происходит не равномерно, ввиду осцилляции кинетической энергии ($E_k$). Уравнение убывания энергии при затухающих колебаниях будет иметь вид:

[frac

=-fracleftlangle E_krightrangle left(6right),]

где $frac

$ — скорость изменения энергии колебаний; $leftlangle E_krightrangle $ — средняя величина кинетической энергии за период колебаний. Уравнение (6) не применяют для промежутков времени, которые меньше периода колебаний.

Так как мы считаем затухание малым, то $leftlangle E_krightrangle $ можно принять равным (как при свободных колебаниях) половине полной энергии осциллятора:

[leftlangle E_krightrangle =fracleft(7right).]

В таком случае уравнение (6) можно записать в виде:

Выражение (8) отображает «сглаженное» поведение энергии колебаний (в случае, если детали изменения энергии за один период колебаний не интересны). Оно показывает, что скорость изменения энергии пропорциональна самой энергии. Решением уравнения (8) является функция:

где $E_0$ — величина энергии колебательной системы в начальный момент времени.

Так как энергия колебаний пропорциональна квадрату амплитуды ($Esim A^2$), изменение амплитуды колебаний за большие отрезки времени (в сравнении с периодом колебаний) запишем в виде функции:

$A_0$ — начальная амплитуда колебаний.

Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Время жизни колебаний. Период затухающих колебаний. Декремент затухания

Из формулы (10) видно, что амплитуда затухающих колебаний убывает по экспоненте. За время $tau =frac$ амплитуда убывает в $e$ раз и это не зависит от $A_0$. Время $tau $ в этом случае называют временем жизни колебаний (или временем релаксации) (не смотря на то, что в соответствии с выражением (9) колебания должны длиться бесконечно). Тезис о малости затухания означает, что время жизни колебаний не бесконечно, а много больше, чем их период ($tau gg T$). За время жизни происходит много колебательных движений.

Строго говоря, затухающие колебания не являются строго периодическими движениями. Периодом в данном случае считают промежуток времени между двумя последовательными максимальными отклонениями от положения равновесия.

Период затухающих колебаний считают равным:

Пусть $Aleft(tright) и A(t+T)$ — амплитуды двух последовательных колебаний, моменты времени которых отличаются на период. Отношение этих амплитуд, следуя (10) равно:

называют декрементом затухания. Натуральный логарифм декремента затухания ($theta $):

называют логарифмическим декрементом затухания. Для колебательной системы $theta $ постоянная величина.

Видео:Как построить график гармонического колебанияСкачать

Как построить график гармонического колебания

Примеры задач с решением

Задание. Каков коэффициент затухания маятника ($gamma $), если за $Delta t$ амплитуда его колебаний уменьшилась в $n$ раз?

Решение. За основу решения задачи примем уравнение затухающих колебаний в виде:

По условию задачи имеем:

С другой стороны:

где $t_2-t_1=Delta t$. Найдем натуральный логарифм от правой и левой части выражения (1.2), получим:

Выразим $gamma $ из (1.3) учтем, что $frac=n$:

Ответ. $gamma =frac<>$

Задание. Что представляет собой фазовая траектория затухающего колебания?

Решение. Фазовой траекторией называют траекторию движения в плоскости $left(x;;vright).$ По оси абсцисс откладывается отклонение $x$, по оси ординат откладывают скорость $v$. Каждому движению в момент времени $t$ соответствует изображающая точка, на указанной плоскости координаты ее $left(x,vright),$ они однозначно определены мгновенными значениями отклонения и скорости. Точка со временем движется и описывает траекторию (рис.1). В данном случае время выступает как параметр, уравнение фазовой траектории задет функция:

Фазовая траектория затухающего колебания, если

[<overline>_

=-beta overlineleft(2.2right),]

представляет собой незамкнутую спираль, которая закручивается вокруг начала координат (рис.1). Если затухание колебаний малое, то есть за время жизни колебательная система совершает множество колебаний, количество витков спирали в фазовой плоскости будет таким же.

Гармоническое колебательное движение и волны

12.41. Точка участвует в двух взаимно перпендикулярных колебаниях x = sinPt и y = 2sin(Pt+P/2). Найти траекторию результирующего движения точки.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12 42. Точка участвует в двух взаимно перпендикулярных колебаниях х = sinPt a y = 4sin(Pt + P). Найти траекторию результирующего движения точки и начертить ее с нанесением масштаба.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.43. Период затухающих колебаний T = 4с; логарифмический декремент затухания N = 1.6; начальная фаза φ = 0. При t=T/4 смещение точки x = 4,5 см. Написать уравнение движения

этого колебания. Построить график этого колебания в пределах двух периодов.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.44. Построить график затухающего колебания, данного

уравнением x=5e -0,1t sinP/4t м.

Построить график затухающих колебаний данного уравнения

12.45. Уравнение затухающих колебаний дано в виде x=5e -0,25t sinP/2tм. Найти скорость v колеблющейся точки в моменты времени t, равные: 0, T, 2T, 3Т и 4T,

Построить график затухающих колебаний данного уравнения

12.46. Логарифмический декремент затухания математического маятника N = 0.2. Во сколько раз уменьшится амплитуда колебаний за одно полное колебание маятника?

Построить график затухающих колебаний данного уравнения

12.47. Найти логарифмический декремент затухания математического маятника, если за время t = 1мин амплитуда колебаний уменьшилась в 2 раза. Длина маятника l= 1м.

Построить график затухающих колебаний данного уравнения

12.48. Математический маятник длиной l = 24,7 см совершает затухающие колебания. Через какое время t энергия колебаний маятника уменьшится в 9,4 раза? Задачу решить при значении логарифмического декремента затухания: а) N = 0,01; б) N = 1.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.49. Математический маятник совершает затухающие колебания с логарифмическим декрементом затухания N = 0,2 . Во сколько раз уменьшится полное ускорение маятника в его крайнем положении за одно колебание?

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.50. Амплитуда затухающих колебаний математического маятника за время t = 1 мин уменьшилась вдвое. Во сколько раз уменьшится амплитуда за время t = 3 мин?

Построить график затухающих колебаний данного уравнения

12.51. Математический маятник длиной l = 0,5м, выведенный из положения равновесия, отклонился при первом колебании на х1 = 5 см, а при втором ( в ту же сторону) — на x2 = 4см. Найти время релаксации t, т. е. время, в течение которого амплитуда колебаний уменьшится в е раз, где е — основание натуральных логарифмов.

Построить график затухающих колебаний данного уравнения

12.52. К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на dl = 9,8см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Каким должен быть коэффициент затухания δ, чтобы: а) колебания прекратились через время t = 10 с (считать условно, что колебания прекратились, если их амплитуда упала до 1% от начальной); б) груз возвращается в положение равновесия апериодически; в) логарифмический декремент затухания колебаний был равным N = 6 ?

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.53. Тело массой m = 10 г совершает затухающие колебания с максимальной амплитудой Amax = 7см, начальной фазой φ = о и коэффициентом затухания δ = 1,6 см -1 . На это тело начала действовать внешняя периодическая сила F, под действием которой установились вынужденные колебания. Уравнение вынужденных колебаний имеет вид х = 5sin(10Pt-3P/4) см. Найти (с числовыми коэффициентами) уравнение собственных колебаний и уравнение внешней периодической силы.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.54. Гиря массой m = 0,2 кг, висящая на вертикальной пружине, совершает затухающие колебания с коэффициентом затухания δ= 0,75 см -1 . Жесткость пружины k = 0,5кН/м. Начертить зависимость амплитуды А вынужденных колебаний гирьки от частоты внешней периодической силы, если известно, что максимальное значение внешней силы F0 = 0,98 Н. Для построения .трафика найти значение А для частот: w= 0, w= 0,5, w = 0,75, w = w0, w = w=1,5w0 и w = 2w0, где w0— частота собственных колебаний подвешенной гири.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.55. По грунтовой дороге прошел трактор, оставив следы в виде ряда углублений, находящихся на расстоянии l = 30 см друг от друга. По этой дороге покатили детскую коляску, имеющую две одинаковые рессоры, каждая из которых прогибается на x0 = 2 см под действием груза массой m0 = 1 кг. С какой скоростью v катили коляску, если от толчков на углублениях она, попав в резонанс, начала сильно раскачиваться? Масса коляски M= 10 кг.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.56. Найти длину волны λ колебания, период которого T = 10 -14 с. Скорость распространения колебаний с = 3 * 10 8 м с.

Построить график затухающих колебаний данного уравнения

12.57. Звуковые колебания, имеющие частоту v = 500 Гц и амплитуду A =0.25 мм. распространяются в воздухе. Длина волны λ = 70 см. Найти скорость с распространения колебаний и максимальную скорость Vmax частиц воздуха.

Построить график затухающих колебаний данного уравнения

12.58. Уравнение незатухающих колебаний имеет вид

x=10sinP/2*t см. Найти уравнение волны, если скорость распространения колебаний с = 300м*с. Написать и изобразить графически уравнение колебания для точки, отстоящей на расстоянии

l = 600 м от источника колебаний. Написать и изобразить графически уравнение колебания для точек волны в момент времени t= 4 с после начала колебаний.

Построить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравненияПостроить график затухающих колебаний данного уравнения

12.59. Уравнение незатухающих колебаний имеет вид x = 4sin600Pt см. Найти смещение x от положения равновесия

точки, находящейся на расстоянии l = 75 см от источника колебаний, для момента времени t = 0,01 с после начала колебаний. Скорость распространения колебаний с = 300 м/с.

Построить график затухающих колебаний данного уравнения

12.60. Уравнение незатухающих колебаний имеет вид x=sin2,5Pt см. Найти смещение х от положения равновесия, скорость v и ускорение a точки, находящейся на расстоянии

l = 20м от источника колебаний, для момента времени t = 1с после начала колебаний. Скорость распространения колебаний с = 100 м*с.

Построить график затухающих колебаний данного уравнения

Ошибка в тексте? Выдели её мышкой и нажми Построить график затухающих колебаний данного уравнения

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Видео:Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Построить график, затухающего колебания, данного уравнением x=5e-0,1t sin(π/4t) м

Видео:Урок 346. Определение добротности по графику затухающих колебанийСкачать

Урок 346. Определение добротности по графику затухающих колебаний

Ваш ответ

Видео:Урок 335. Анализ графика гармонических колебанийСкачать

Урок 335. Анализ графика гармонических колебаний

решение вопроса

Видео:Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Похожие вопросы

  • Все категории
  • экономические 43,292
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,160
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

🔍 Видео

10 класс, 19 урок, График гармонического колебанияСкачать

10 класс, 19 урок, График гармонического колебания

Выполнялка 53.Гармонические колебания.Скачать

Выполнялка 53.Гармонические колебания.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Затухающие колебания. Вынужденные колебания. Физика 11 классСкачать

Затухающие колебания. Вынужденные колебания. Физика 11 класс

Физика 9 класс, §26 Затухающие колебания. Вынужденные колебанияСкачать

Физика 9 класс, §26 Затухающие колебания. Вынужденные колебания

График гармонического колебания | Алгебра 10 класс #23 | ИнфоурокСкачать

График гармонического колебания | Алгебра 10 класс #23 | Инфоурок

Урок 344. Затухающие колебания (часть 2)Скачать

Урок 344. Затухающие колебания (часть 2)

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

71. Вынужденные колебанияСкачать

71. Вынужденные колебания

Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)
Поделиться или сохранить к себе: