Численное решение дифференциальных уравнений с помощью команды dsolve. Построение графиков решений дифференциальных уравнений с помощью команды odeplot.
Для того, чтобы найти численное решение дифференциального уравнения (задачи Коши или краевой задачи) в команде dsolve следует указать параметр type=numeric (или просто numeric ). Тогда команда решения дифференциального уравнения будет иметь вид dsolve(eq, vars, type=numeric, options), где eq – уравнения, vars – список неизвестных функций, options – параметры, позволяющие указать метод численного интегрирования дифференциального уравнения. В Maple реализованы такие методы: method=rkf45 — метод Рунге-Кутта-Фельберга 4-5-ого порядка (установлен по умолчанию); method=dverk78 – метод Рунге-Кутта 7-8 порядка; mtthod=classical – классический метод Рунге-Кутта 3-его порядка; method=gear и method=mgear – одношаговый и многошаговый методы Гира.
График численного решения дифференциального уравнения можно построить с помощью команды odeplot(dd, [x,y(x)], x=x1..x2), где в качестве функции используется команда dd:=dsolve(, y(x), numeric) численного решения, после нее в квадратных скобках указывают переменную и неизвестную функцию [x,y(x)] , и интервал x=x1..x2 для построения графика.
Видео:Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать
Задание 2.1.
1. Найти численное и приближенное решение в виде степенного ряда до 6-ого порядка задачи Коши: , , .
Сначала найдем численное решение задачи Коши и построим его график.
de := proc ( rkf45_x ). end
Замечание : в строке вывода появляется сообщение о том, что при решении использован метод rkf45 . Во избежание вывода строк, не несущих полезной информации, рекомендуется отделять промежуточные команды двоеточием. Если необходимо получить значение решения при каком-то фиксированном значении переменной х (заодно будет выведено значение производной решения в этой точке), например, при х =0.5, то следует набрать:
Теперь найдем приближенное решение задачи Коши в виде степенного ряда и построим графики численного решения и полученного степенного ряда в интервале их наилучшего совпадения.
Наилучшее приближение решения степенным рядом достигается примерно на интервале — 1 x
х ‘( t )=2 y ( t )sin( t ) — х ( t ) — t ,
Пакет графического представления решений дифференциальных уравнений Detools .
Для численного решения задачи Коши, построения графиков решения и фазовых портретов в Maple имеется специальный пакет DEtools .
Команда DEplot из пакета DEtools строит численными методами графики решения или фазовые портреты. Эта команда аналогична команде odeplot , но более функциональна. Она, в отличие от odeplot , сама производит численное решение дифференциального уравнения. Основные параметры DEplot похожи на параметры odeplot : DEplot(de, vars, range, x=х1..х2, y=у1..у2, cond, ptions) , где de — дифференциальное уравнение или система дифференциальных уравнений; vars – список неизвестных функций; range – диапазон измерения независимой переменной; cond – начальные условия; x=х1..х2 и y=у1..у2 – диапазоны изменения функций; options – дополнительные параметры.
Наиболее часто используемые параметры: linecolor =цвет линии; scene=[x,y] — определяет, какие зависимости выводить на график; iterations =число итераций, необходимое для повышения точности вычислений (по умолчанию это число равно 1); stepsize =число, равное расстоянию между точками на графике, по умолчанию оно равно ( x2 — x1 )/20, этот параметр необходим для вывода более гладкой кривой решения; obsrange = true / false — прерывать или нет вычисления, если график решения выходит за установленный для рисования интервал.
Для решения дифференциального уравнения n -ого порядка начальные условия можно задавать в более компактной форме: [x0, y0, y ‘ 0, y » 0,…] , где x0 — точка, в которой задаются начальные условия, y0 — значение искомой функции в точке x0 , y ‘ 0, y » 0,… — значения производных первой, второй и т.д. до ( n — 1)-ого порядка.
Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать
Задание 2.2.
Нарисовать график решения дифференциального уравнения:
, , , в интервале .
(D@@2)(y)(0)=1]], stepsize=.1, linecolor=black,
Построение фазовых портретов систем дифференциальных уравнений.
Для дифференциального уравнения порядка выше первого команда DEplot рисует только кривые решений дифференциальных уравнений, а для систем дифференциальных уравнений первого порядка могут быть нарисованы и фазовые портреты.
С помощью команды DEplot можно построить фазовый портрет в плоскости ( x , y ), для системы двух дифференциальных уравнений: , если в параметрах данной команды указать scene=[x,y] .
Если система дифференциальных уравнений является автономной, то на фазовом портрете будет построено поле направлений в виде стрелок. Размер стрелок регулируется параметром arrows = SMALL , MEDIUM , LARGE , LINE или NONE .
Для того, чтобы нарисовать весь фазовый портрет, необходимо для каждой фазовой траектории указывать начальные условия: например, для системы двух дифференциальных уравнений первого порядка несколько начальных условий в команде DEplots указываются после задания диапазона изменения независимой переменной t : [[x(0)=x1, y(0)=y1], [x(0)=x2, y(0)=y2],…, [x(0)=xn, y(0)=yn]] .
Начальные условия можно задавать в более компактной форме: [t0, x0, y0] , где t0 — точка, в которой задаются начальные условия, x0 и y0 — значения искомых функций в точке t0 .
Фазовый протрет системы двух дифференциальных уравнений первого порядка можно также построить с помощью команды phaseportrait(sys, [x,y],x1..x2,[[cond]]) , где sys — система двух дифференциальных уравнений первого порядка, [x,y] — имена искомых функций, x1..x2 — интервал, на котором следует построить фазовый портрет, а в фигурных скобках указываются начальные условия. Эта команда находится в пакете DEtools , поэтому данный пакет должен быть предварительно загружен.
Видео:Математический анализ, 16 урок, Исследование функции и построение графикаСкачать
Задание 2.3.
1. Построить фазовый портрет системы дифференциальных уравнений:
для нескольких наборов начальных условий: х (0)=1, у (0)=0.2; х (0)=0, у (0)=1; х (0)=1, у (0)=0.4; х (0)=1, у (0)=0.75; х (0)=0, у (0)=1.5; х (0)= — 0.1, у (0)=0.7.
stepsize=0.1, arrows=none, linecolor=black);
2. Построить фазовый портрет с полем направлений автономной системы
для различных начальных условий х (0)=1, у (0)=0; х (0)= — 1, у (0)=0; х (0)= p , у (0)=1; х (0)= — p , у (0)=1; х (0)=3 p , у (0)=0.2; х (0)=3 p , у (0)=1; х (0)=3 p , у (0)=1.8; х (0)= — 2 p , у (0)=1;.
3. Построить фазовый портрет системы дифференциальных уравнений:
Начальные условия, диапазон изменения переменной и размеры координатных осей подбираются самостоятельно из соображений наглядности фазового портрета.
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Видео:Исследование функции. Построение графика. Высшая математикаСкачать
Построение графика функции методом дифференциального исчисления
Правила ввода функции
- Примеры
≡ x^2/(x+2)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3)
Пример №1 . Провести полное исследование функции и построить ее график.
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x) , и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x 3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2. Найти первую производную функции
7) Находим . Видим, что y’’=0 только при x=0, при этом y” 0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y” Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж:
Построить график функции
Пример №2 . Построить график функции .
Решение.
1. Область определения функции D(y) = (-∞;0)U(0;∞).
2. Функция не является четной или нечетной.
3. Найдем точки пересечения графика с осью ОХ; имеем
; .
4. Точки разрыва x=0 , причем ; следовательно, x=0 является вертикальной асимптотой графика.
Найдем наклонные асимптоты:
;
.
Наклонная асимптота имеет уравнение y=x .
5. Найдем экстремум функции и интервалы возрастания и убывания. Имеем . Существует единственная критическая точка x =2. В промежутках x∈(-∞ ;0)∪(2; +∞) y’>0, следовательно, функция возрастает; в промежутке x∈(0;2) y’ 0, следовательно, x=2 – точка минимума ymin=3.
6. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как y’’>0 (x≠0), то график функции всюду вогнут. Точек перегиба кривая не имеет.
Строим график функции.
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
10. Графическое представление решений дифференциальных уравнений
Графическое представление решений дифференциальных уравнений
Применение функции odeplot пакета plots
Для обычного графического представления результатов решения дифференциальных уравнений может использоваться функция odeplot из описанного выше пакета plots. Эта функция используется в следующем виде:
где s — запись (в выходной фирме) дифференциального уравнения или системы дифференциальных уравнений, решаемых численно функцией dsolve, vars — переменные, г — параметр, задающий пределы решения (например, а. .Ь), и о — необязательные дополнительные опции.
На рис. 13.5 представлен пример решения одиночного дифференциального уравнения с выводом решения у(х) с помощью функции odeplot.
В этом примере решается дифференциальное уравнение:
при у(0) = 2 и x, меняющемся от-5 до 5. Левая часть уравнения записана с помощью функции вычисления производной diff. Результатом построения является график решения у(х).
В другом примере (рис. 13.6) представлено решение системы из двух нелинейных дифференциальных уравнений. Здесь с помощью функции odeplot строятся графики двух функций. —у(х) и z(x).
В этом примере решается система:
при начальных условиях y(0)=0, z(0) = 1 их, меняющемся от -4 до 4 при числе точек решения, равном 25.
Иногда решение системы из двух дифференциальных уравнений (или одного дифференциального уравнения второго порядка) представляется в виде фазового портрета — при этом по осям графика откладываются значения у(х) и z(х) при изменении х в определенных пределах. Рисунок 13.7 демонстрирует построение фазового портрета для системы, представленной выше.
Обычное решение, как правило, более наглядно, чем фазовый портрет решения. Однако для специалистов (например, в теории колебаний) фазовый портрет порою дает больше информации, чем обычное решение. Он более трудоемок; для построения, поэтому возможность Марle 7 быстро строить фазовые портреты трудно переоценить.
Рис. 13.5. Пример решения одиночного дифференциального уравнения
Рис. 13.6. Пример решения системы из двух дифференциальных уравнений
Рис. 13.7. Представление решения системы дифференциальных уравнений в виде фазового портрета
🔍 Видео
Общая схема исследования функции и построение ее графикаСкачать
Математика это не ИсламСкачать
Откуда появляются дифференциальные уравнения и как их решатьСкачать
Урок 13. Применение производной к построению графиков функций. Алгебра 11 классСкачать
Для 1 курса. Исследование функций и построение графиков.Скачать
Как построить график функции без таблицыСкачать
Практика 1 ИзоклиныСкачать
ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать
ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Построение графиков тригонометрических функций с помощью преобразований. Практ. часть. 10 класс.Скачать
Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
Построение графиков функций y=f(x)+b и y=f(x+a) - алгебра 9 классСкачать
Алгебра 11 класс (Урок№20 - Построение графиков функций.)Скачать