Порядок решения уравнений графическим способом

Методика организации решения уравнений графическим способом как средство формирования графических умений у учащихся

Разделы: Математика

Графический метод обладает рядом преимуществ:

  • он часто проще аналитического;
  • обладает наглядностью. Особенно когда нет решений или требуется установить количество корней.
  • он красив и доставляет эстетическое наслаждение. Выполнять графики нужно в цвете. Это помогает в выборе ответа.

Умение строить графики функций не является самоцелью. Часто построение графиков связано с исследованием поведения функций. Однако необходимость построения графиков облегчают нахождение решений уравнений и неравенств, сокращая или упрощая аналитические выкладки и часто при этом являются единственным методом решения таких задач. Графический метод решения способствует лучшему усвоению ряда понятий: функции, корней уравнения и неравенства, систем уравнений. При этом целесообразно при графическом решении уравнений устанавливать связи с такими свойствами функций как возрастание и убывание, знакопостоянство, обращение функции в ноль и т.д., что помогает глубже понять функциональную зависимость между величинами. Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решать многие задачи и порой является единственным средством их решения. Кроме того, умение строить график представляет большой самостоятельный интерес. Материал, связанный с построением графиков функций, в средней школе изучается недостаточно полно с точки зрения требований, предъявляемых на экзаменах. Поэтому задачи на построение графиков нередко вызывают затруднения у учащихся.

Для того, чтобы по графикам можно было получать достаточно приемлемые числовые ответы, графики должны быть особенно тщательно построены. Решается задача организации работы таким образом, чтобы выработать навыки быстрого построения графиков элементарных функций и их преобразований. Работа над формированием графических умений начинается с 5-го класса.

Изящно выполненная работа способствует развитию чувства красоты, удовлетворения от проделанной работы.

Изучение поведения функций и построение их графиков являются важным разделом школьного курса. Свободное владение техникой построения графиков часто помогает решать сложные задачи, а порой является единственным средством их решения. Кроме того, умение строить графики функций представляет большой интерес для самих учащихся. Однако на базе основной школы материал, связанный с этим вопросом, представлен несколько хаотично, изучается недостаточно полно, многие важные моменты не входят в программу.

Цель – прояснить и дополнить школьный материал, связанный с функциями и построение их графиков, применением их к решению уравнений, их систем.

В требованиях к уровню подготовки выпускников по разделу «Функции и графики» прописано:

  • решать уравнения, системы уравнений, используя свойства функций и их графические представления;
  • находить приближённые решения уравнений и их систем, используя графический метод.

В преподавание алгебры по учебнику под редакцией А.С.Теляковского. Линейная функция и функции у=х 2 , у=х 3 изучаются в 7 классе. Практически не вырабатываются навыки в применении графиков этих функций. Единственное упражнение: найти координаты точек пересечения графиков функций у=8,5х и у=0,5х-19,5. графики линейных функций только иллюстрируют решение систем линейных уравнений.

Автор вводит некоторые упражнения, необходимые в дальнейшем при решении уравнений и их систем:

— постройте в одной и той же координатной плоскости а) у=х 2 ; у=4; б) у=х 2 ; у=2х.

— изобразите схематически графики функций у = -0,9х + 4; у = 2,3х; у = х/10 . Но упражнения вводятся как дополнительные. И в «Задачах повышенной трудности» (в конце учебника) есть уравнения, которые тоже можно решать графическим способом: |х -3| = 7; |х+2| = 9; |4 — х| = 1,5.

В 8 классе изучаются функции у = к/х; у =Порядок решения уравнений графическим способом. Представлены функции у = 4/|х|, у = -6/|х|.

— Могут ли графики функций у=к/х и у = ах +в пересекаться

а) в одной точке;

б) в двух точках;

в) в трёх точках.

— Могут ли графики функций у = к/х и у = ах +в пересекаться в двух точках, лежащих

а) в одной четверти;

б) в первой и второй четвертях;

в) в первой и третьей четвертях.

Опять же эти упражнения в дополнительных.

В 8 классе обучающихся знакомят с графическим способом решения уравнений (8/х = -х+6; (8/х = х 2 ). Появляются уравнения третьей степени, которые не решаются аналитическим способом. (х 3 — х + 1 = 0; х 3 + 2х — 4=0) На изучение этой темы отводится 1 час.

В 9 классе подробно изучается квадратичная функция и её график. Получены обучающимися представления о преобразовании графического объекта относительно осей координат. Именно в это время отрабатываются навыки в построении параболы. Но данные преобразования почти не переносятся на преобразования других графических объектов. Хотя есть два упражнения, которые соотносятся с заданиями, встречающимися в материалах ЕГЭ.

На рисунке изображён график одной их функций Порядок решения уравнений графическим способом. Какой именно?

Порядок решения уравнений графическим способом

— Какой из трёх графиков, изображённых на рисунке, является графиком функции у = |х -2|

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Сделаны попытки преобразования графических объектов.

— Какие преобразования надо выполнить, чтобы

а) из графика функции у=х 3 получить графики функций у = — х 3 ; у = (х-3) 3 ; у = х 3 + 4.

б) из графика функции у = Порядок решения уравнений графическим способомполучить графики функций у = — ; Порядок решения уравнений графическим способом

— Постройте в одной координатной плоскости графики функций у = | х|; у =|х -4| ; у = |х -4|-3.

В учебнике 9 класса в главе «Целое уравнение и его корни» упоминается графический способ уравнений третьей и более высокой степени как один из способов наряду с разложением на множители.

Поэтому: уже в 7 классе строим графики функций у = | х| — 3, у = 4 — | х|; у =|х +4|; у = | х — 3|.

При построении параболы вводим первые преобразования:

— построить графики функций у = х 2 +3; у=х 2 -5, где смещение по оси ординат. А затем у = (х+2) 2 ; у = (х-1) 2 . Конечно, не все ученики усваивают, впрочем, как и всё содержание материала. Для успешных учеников это не сложно. Тем более это только пропедевтика.

В 8-м классе: Урок-практикум.

Тема: «График функции у = Порядок решения уравнений графическим способом. Графический способ решения иррациональных уравнений»

Цель: отработать навыки в преобразовании графика функции у = Порядок решения уравнений графическим способом, закрепить умения графически решать иррациональные уравнения.

I. Фронтально

1). Схематически в одной системе координат изобразить графики функций

Порядок решения уравнений графическим способом

2). Решить уравнения

Порядок решения уравнений графическим способом

II. Построить графики функций

Порядок решения уравнений графическим способом

III. Решение уравнений

Порядок решения уравнений графическим способом

X 2 -3 =Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

В 8 классе строим преобразования гиперболы и графика функции у = Порядок решения уравнений графическим способом.

Порядок решения уравнений графическим способом

Упражнения взяты из «Сборника задач по алгебре 8-9 класса» М.Л.Галицкого, А.И.Звавича. Уже на факультативных занятиях или занятиях кружка решаем уравнения с параметром |х 2 -2х-3| = а. Определить, при каком а уравнение имеет три корня. Строим графики функций у = |х 2 -2х-3|; у = а. Получаем ответ а = 4.

Порядок решения уравнений графическим способом

В 9 классе больше занимаемся исследованием квадратного трёхчлена. Формулы функций усложняю. Рассматриваем графики вида у = (х 2 -2) 2 — (х 2 -1) 2 ;

Порядок решения уравнений графическим способом

Необычность конструкций, разрыв графиков, удаление точек вызывает некоторую удивлённость. Тем самым преодолевается стандартность мышления, развивается воображение, повышается интерес: а что ещё может получиться? В каких случаях?

Уравнения, решаемые графическим способом.

I. Решение уравнений Р(х) = 0, где Р(х) – многочлен степени большей 2.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Графический метод. Описание, примеры решения уравнений

Эта статья посвящена одному из направлений функционально-графического метода решения уравнений, а именно, графическому методу. Сначала дано описание графического метода: раскрыта его суть, сказано, на чем базируется метод, приведено его обоснование, обговорены особенности метода, связанные с точностью. Дальше идет практическая часть: записан алгоритм решения уравнений графическим методом и показаны решения характерных примеров.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

В чем состоит метод и на чем он базируется

Графический метод решения уравнений состоит в использовании графиков функций, отвечающих частям уравнения, для нахождения с их помощью решения уравнения. Базируется он на следующем утверждении:

Решение уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) .

Обоснованием этого утверждения займемся в следующем пункте. А сейчас выудим из него полезные сведения.

Основное из них таково: по количеству точек пересечения графиков функций y=f(x) и y=g(x) можно судить о количестве корней уравнения f(x)=g(x) , а по абсциссам точек пересечения можно судить о корнях этого уравнения. Проиллюстрируем сказанное.

Взглянем на чертеж, на котором изображены графики функций Порядок решения уравнений графическим способоми Порядок решения уравнений графическим способом.
Порядок решения уравнений графическим способом

Очевидно, в видимой области графики изображенных функций не имеют точек пересечения. За пределами видимой области графики тоже не имеют точек пересечения. Это мы можем утверждать в силу известного нам поведения графиков степенных функций и линейных функций. Отсутствие точек пересечения позволяет нам сделать вывод, что уравнение Порядок решения уравнений графическим способомне имеет решений.

Другой пример. На следующем рисунке изображены графики функций Порядок решения уравнений графическим способоми Порядок решения уравнений графическим способом.
Порядок решения уравнений графическим способом

Сколько точек пересечения мы видим? Две. Известное поведение графиков показательных функций и линейных функций позволяет утверждать, что за пределами видимой области точек пересечения нет. Значит, графики функций Порядок решения уравнений графическим способоми Порядок решения уравнений графическим способомпересекаются в двух точках, следовательно, уравнение Порядок решения уравнений графическим способомимеет два корня. А каковы значения этих корней? Для ответа на этот вопрос определяем абсциссы точек пересечения графиков. По рисунку находим, что абсциссы точек пересечения есть −2 и 1 . Через проверку подстановкой убеждаемся, что это действительно корни уравнения Порядок решения уравнений графическим способом:
Порядок решения уравнений графическим способом

Здесь стоит заметить, что к проверке подстановкой мы обратились не случайно. Дело в том, что найденные по графикам значения корней можно считать лишь приближенными до проведения проверки. Подробнее об этом мы поговорим в одном из следующих пунктов этой статьи, раскрывающем особенности графического метода.

Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Обоснование метода

Докажем, что множество решений уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) . Для этого достаточно показать, во-первых, что если x0 – корень уравнения f(x)=g(x) , то x0 – это абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , и, во-вторых, если x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , то x0 – корень уравнения f(x)=g(x) . Приступаем к доказательству.

Пусть x0 – корень уравнения f(x)=g(x) . Тогда f(x0)=g(x0) – верное числовое равенство. Это равенство можно трактовать так: значения функции y=f(x) и y=g(x) в точке x0 совпадают. А из этого следует, что x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) .

Первая часть доказана. Переходим к доказательству второй части.

Пусть x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) . Это означает, что значения функций y=f(x) и y=g(x) в точке x0 равны, значит, f(x0)=g(x0) . А из этого равенства следует, что x0 – корень уравнения f(x)=g(x) .

Так доказана вторая часть.

Видео:Графический метод решения уравнений 8 классСкачать

Графический метод решения уравнений   8 класс

Особенности метода

Графический метод предполагает использование графиков функций. В общем случае построение графиков функций – дело непростое. Поэтому, графический метод решения уравнения обычно применяется лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, и при этом не видно другого аналитического метода решения. Это одна из особенностей графического метода решения уравнений.

Другая особенность касается получаемых по графикам результатов. Полученные по графикам результаты можно считать лишь приближенными. Дело здесь в том, что сами по себе графики функций — вещь не совсем точная (но при этом очень наглядная и во многих отношениях удобная), особенно если говорить о графиках, построенных от руки. Это следует из принципов, которыми мы руководствуемся при построении графиков функций. Что мы делаем для построения графика функции в общем случае? Проводим исследование функции, чтобы получить ряд «опорных» точек, таких как граничные точки области определения, максимумы-минимумы, точки перегиба, и понять поведение функции на всех интервалах ее области определения. После этого определяем несколько контрольных точек. Дальше переносим все определенные в ходе исследования точки на координатную плоскость и, сейчас внимание, соединяем их плавной линией в соответствии с выясненным в ходе исследования поведением функции. Эта «плавная линия» и есть график функции. О какой точности можно здесь говорить? Понятно, что она определяется точностью нашего построения.

С приближенными, найденными по графикам, значениями корней уравнения можно так или иначе работать. В некоторых случаях определенные по графикам значения корней оказываются точными значениями, в чем позволяет убедиться проверка подстановкой. В других случаях есть возможность уточнить значения корней до требуемой степени точности, для этого существуют специальные методы уточнения значений корней. А вот если по графикам нет возможности определить количество корней, не говоря уже об их значении, то, почти наверняка, стоит отказываться от графического метода решения уравнения. Добавим наглядности сказанному.

Давайте посмотрим на изображенные в одной прямоугольной системе координат графики функций Порядок решения уравнений графическим способоми y=−x 2 +6·x−5 .
Порядок решения уравнений графическим способом

По этому чертежу сложно судить даже о количестве корней уравнения Порядок решения уравнений графическим способом, не говоря уже про их значения с приемлемой степенью точности. Здесь можно лишь грубо сказать, что если корни есть, то их значения находятся на промежутке от нуля до трех. Такую прикидку мы даем по той причине, что графики функций в обозначенном промежутке очень близки, почти совпадают. Если есть возможность построить графики более точно в обозначенном промежутке, то это немного проясняет картину:
Порядок решения уравнений графическим способом

Сейчас мы видим три точки пересечения, даже можем приближенно указать их абсциссы: 1 , 2 и 2,7 . Но опять же, это не более чем приближенные результаты, нуждающиеся в проверке и строгом обосновании.

Учитывая оговоренные особенности графического метода решения уравнения, для себя можно принять следующее: к графическому методу стоит обращаться лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, когда по построенным графикам можно с уверенностью указать точное количество точек их пересечения, и когда не просматривается альтернативный метод решения.

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Алгоритм решения уравнений графическим методом

Анализ приведенной выше информации позволяет записать алгоритм решения уравнений графическим методом. Чтобы решить уравнение графически, надо:

  • Построить в одной прямоугольной системе координат графики функций, отвечающие левой и правой частям уравнения.
  • По чертежу определить все точки пересечения графиков:
    • если точек пересечения нет, то решаемое уравнение не имеет корней,
    • если точки пересечения имеются, то переходим к следующему шагу алгоритма.
  • По чертежу определить абсциссы всех точек пересечения графиков – это приближенные значения всех корней исходного уравнения.
  • Если есть основания полагать, что некоторые или все определенные на предыдущем шаге значения являются точными значениями корней решаемого уравнения, то осуществить их проверку, например, подстановкой.

Дадим краткий комментарий к последнему шага алгоритма. Иногда определенные по чертежу приближенные значения корней оказываются точными. Обычно это касается целых значений. Но, опять же, прежде чем утверждать, что найденные значения является точными корнями уравнения, сначала нужно осуществить проверку этих значений, например, проверку подстановкой.

Видео:Решение системы уравнений графическим методомСкачать

Решение системы уравнений графическим методом

Решение примеров

Графический метод решения уравнений начинает входить в арсенал изучающих математику в 7 классе сразу же после знакомства с координатной плоскостью и самой первой функцией – линейной функцией y=k·x+b . Именно тогда мы сталкиваемся с заданиями, наподобие следующего: с помощью графика линейной функции y=2·x−6 определить, при каком значении x будет y=0 [1, с. 50-51]. Для ответа на поставленный вопрос мы строим график указанной линейной функции y=2·x−6 .
Порядок решения уравнений графическим способом

По чертежу находим точку пересечения графика с осью Ox (ось Ox отвечает графику функции y=0 ), и определяем абсциссу точки пересечения: x=3 . По сути, мы решаем уравнение 2·x−6=0 графическим методом.

Чуть позже в 7 классе изучается функция y=x 2 . После этого опять заходит разговор о графическом методе решения уравнений, но уже более детальный, где метод уже называется своим именем и дается его алгоритм [1, с. 149-151; 2, с. 109]. Там с его помощью решаются уравнения, одной части которых отвечает функция y=x 2 , а другой – линейная функция y=k·x+b . Например, уравнение x 2 =x+1 . Для его решения строятся в одной системе координат соответствующие графики функций y=x 2 и y=x+1 :
Порядок решения уравнений графическим способом

Графики, очевидно, пересекаются в двух точках. Можно определить приближенные значения их абсцисс: Порядок решения уравнений графическим способом.

В 8 классе изучаются новые виды функций: y=k/x , квадратичная функция y=a·x 2 +b·x+c , Порядок решения уравнений графическим способом. И, естественно, рассматривается графический метод решения соответствующих уравнений. Особенно тщательно разбирается графическое решение квадратных уравнений. В учебнике Мордковича А. Г. приведены аж пять способов графического решения уравнения x 2 −2·x−3=0 [2, с. 127-131].

И так далее: изучаются функции Порядок решения уравнений графическим способом, степенные функции, тригонометрические, показательные, логарифмические, …, — рассматривается решение соответствующих уравнений графическим методом. Так к концу школьного курса математики мы начинаем воспринимать графический метод решения уравнений как общий метод, позволяющий решать уравнения не только определенных видов, но и уравнения, в которых уживаются самые разнообразные функции: показательные с корнями, тригонометрические с логарифмическими и т.д. Покажем решение такого уравнения.

Решите уравнение Порядок решения уравнений графическим способом

В заключение вспомним, что в этой статье при разговоре об особенностях графического метода решения уравнений мы обращались к иррациональному уравнению Порядок решения уравнений графическим способом. В качестве «благодарности» этому уравнению за помощь в обретении знаний приведем ссылку на его решение графическим методом.

Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Порядок решения уравнений графическим способомОткрываем новые знания

Решите графическим методом систему уравнений:

Порядок решения уравнений графическим способом

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Порядок решения уравнений графическим способом

Построим графики уравнений Порядок решения уравнений графическим способом

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Порядок решения уравнений графическим способомПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Порядок решения уравнений графическим способом

Построим графики уравнений Порядок решения уравнений графическим способом

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Порядок решения уравнений графическим способомОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Порядок решения уравнений графическим способом

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Порядок решения уравнений графическим способом

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Порядок решения уравнений графическим способом

Пусть (х; у) — решение системы.

Выразим х из уравнения Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Подставим найденное выражение в первое уравнение:

Порядок решения уравнений графическим способом

Решим полученное уравнение:

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Порядок решения уравнений графическим способом

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Порядок решения уравнений графическим способом

Подставим найденное выражение в первое уравнение системы:

Порядок решения уравнений графическим способом

После преобразований получим:

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Порядок решения уравнений графическим способом

Подставим во второе уравнение Порядок решения уравнений графическим способомтогда его можно переписать в виде:

Порядок решения уравнений графическим способом

Теперь выразим х через у из первого уравнения системы:

Порядок решения уравнений графическим способом

Подставим в полученное ранее уравнение ху = 2:

Порядок решения уравнений графическим способом

Корни этого уравнения: Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Порядок решения уравнений графическим способом

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Порядок решения уравнений графическим способом.

Корни этого уравнения: Порядок решения уравнений графическим способом

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Порядок решения уравнений графическим способом

2) Порядок решения уравнений графическим способом, получим уравнение Порядок решения уравнений графическим способомкорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Порядок решения уравнений графическим способом

Обозначим Порядок решения уравнений графическим способом

Второе уравнение системы примет вид:

Порядок решения уравнений графическим способом

Решим полученное уравнение. Получим, умножая обе части на 2а:

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Осталось решить методом подстановки линейные системы:

Порядок решения уравнений графическим способом

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Порядок решения уравнений графическим способомсм.

Воспользуемся теоремой Пифагора: Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Решим систему. Выразим из первого уравнения у:

Порядок решения уравнений графическим способом

Подставим во второе уравнение:

Порядок решения уравнений графическим способом

Корни уравнения: Порядок решения уравнений графическим способом

Найдём Порядок решения уравнений графическим способом

С учётом условия Порядок решения уравнений графическим способомполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Порядок решения уравнений графическим способом— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Порядок решения уравнений графическим способом

Вычтем из второго уравнения первое. Получим:

Порядок решения уравнений графическим способом

Дальше будем решать методом подстановки:

Порядок решения уравнений графическим способом

Подставим в первое уравнение выражение для у:

Порядок решения уравнений графическим способом

Корни уравнения: Порядок решения уравнений графическим способом(не подходит по смыслу задачи).

Найдём у из уравнения:

Порядок решения уравнений графическим способом

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Порядок решения уравнений графическим способомсимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Порядок решения уравнений графическим способом, то есть не меняется. А вот уравнение Порядок решения уравнений графическим способомне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Порядок решения уравнений графическим способом, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Порядок решения уравнений графическим способом

переставить местами неизвестные х и у, то получим систему:

Порядок решения уравнений графическим способом

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Порядок решения уравнений графическим способом

Сначала научитесь выражать через неизвестные Порядок решения уравнений графическим способомвыражения:

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Порядок решения уравнений графическим способом

Присылайте задания в любое время дня и ночи в ➔ Порядок решения уравнений графическим способомПорядок решения уравнений графическим способом

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

📸 Видео

Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Графический способ решения уравнений и неравенств | Алгебра 10 классСкачать

Графический способ решения уравнений и неравенств | Алгебра 10 класс

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСС

8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Графический метод решения систем линейных уравнений 7 классСкачать

Графический метод решения систем линейных уравнений 7 класс

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 классСкачать

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 класс

Решение системы линейных уравнений графическим способом. 7 классСкачать

Решение системы линейных уравнений графическим способом. 7 класс

Графический способ решения уравненийСкачать

Графический способ решения уравнений

Решение уравнений графическим способомСкачать

Решение уравнений графическим способом

Графический способ решения систем уравнений | Алгебра 9 класс #18 | ИнфоурокСкачать

Графический способ решения систем уравнений | Алгебра 9 класс #18 | Инфоурок

Графический способ решения уравнений. Алгебра 8 класс.Скачать

Графический способ решения уравнений. Алгебра 8 класс.

Решение систем уравнений графическим способомСкачать

Решение систем уравнений графическим способом
Поделиться или сохранить к себе: