Порядок дифференциального уравнения 3y y x5 равен

Дифференциальные уравнения по-шагам

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Порядок дифференциального уравнения и его решения, задача Коши

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными. Это уравнения, связывающие независимые переменные Порядок дифференциального уравнения 3y y x5 равен, неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово «обыкновенные».

Примеры дифференциальных уравнений:

(1) Порядок дифференциального уравнения 3y y x5 равен;

(2) Порядок дифференциального уравнения 3y y x5 равен;

(3) Порядок дифференциального уравнения 3y y x5 равен;

(4) Порядок дифференциального уравнения 3y y x5 равен;

(5) Порядок дифференциального уравнения 3y y x5 равен.

Уравнение (1) — четвёртого порядка, уравнение (2) — третьего порядка, уравнения (3) и (4) — второго порядка, уравнение (5) — первого порядка.

Дифференциальное уравнение n-го порядка не обязательно должно содержать явно функцию, все её производные от первого до n-го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) — производной второго порядка и функции; в уравнении (4) — независимой переменной; в уравнении (5) — функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x), при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием.

Пример 1. Найти решение дифференциального уравнения Порядок дифференциального уравнения 3y y x5 равен.

Решение. Запишем данное уравнение в виде Порядок дифференциального уравнения 3y y x5 равен. Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления, есть первообразная для Порядок дифференциального уравнения 3y y x5 равен, т. е.

Порядок дифференциального уравнения 3y y x5 равен.

Это и есть решение данного дифференциального уравнения. Меняя в нём C, будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n-го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Порядок дифференциального уравнения 3y y x5 равен

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения Порядок дифференциального уравнения 3y y x5 равени частное решение при Порядок дифференциального уравнения 3y y x5 равен.

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

Порядок дифференциального уравнения 3y y x5 равен,

Порядок дифференциального уравнения 3y y x5 равен,

Порядок дифференциального уравнения 3y y x5 равен.

В результате мы получили общее решение —

Порядок дифференциального уравнения 3y y x5 равен

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

Порядок дифференциального уравнения 3y y x5 равен.

Если кроме дифференциального уравнения задано начальное условие в виде Порядок дифференциального уравнения 3y y x5 равен, то такая задача называется задачей Коши. В общее решение уравнения подставляют значения Порядок дифференциального уравнения 3y y x5 равени Порядок дифференциального уравнения 3y y x5 равени находят значение произвольной постоянной C, а затем частное решение уравнения при найденном значении C. Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии Порядок дифференциального уравнения 3y y x5 равен.

Решение. Подставим в общее решение Порядок дифференциального уравнения 3y y x5 равензначения из начального условия y = 3, x = 1. Получаем

Порядок дифференциального уравнения 3y y x5 равен.

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

Порядок дифференциального уравнения 3y y x5 равен.

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных, в том числе сложных функций. Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения Порядок дифференциального уравнения 3y y x5 равен.

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

Порядок дифференциального уравнения 3y y x5 равен.

Применяем метод интегрирования заменой переменной (подстановкой). Пусть Порядок дифференциального уравнения 3y y x5 равен, тогда Порядок дифференциального уравнения 3y y x5 равен.

Требуется взять dx и теперь — внимание — делаем это по правилам дифференцирования сложной функции, так как x и есть сложная функция («яблоко» — извлечение квадратного корня или, что то же самое — возведение в степень «одна вторая», а «фарш» — самое выражение под корнем):

Порядок дифференциального уравнения 3y y x5 равен

Порядок дифференциального уравнения 3y y x5 равен

Возвращаясь к переменной x, получаем:

Порядок дифференциального уравнения 3y y x5 равен.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x. Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.

Пример 5. Найти общее решение дифференциального уравнения Порядок дифференциального уравнения 3y y x5 равен.

Решение. Как видим, переменная x в уравнении отсутствует. Вспоминаем из курса дифференциального исчисления, что производная может быть записана также в виде Порядок дифференциального уравнения 3y y x5 равен. В результате уравнение приобретает вид

Порядок дифференциального уравнения 3y y x5 равен,

то есть, в нём в некотором виде появился x.

Теперь вспомнаем одно из свойств пропорции: из пропорции Порядок дифференциального уравнения 3y y x5 равенвыткают следующие пропорции:

Порядок дифференциального уравнения 3y y x5 равен,

то есть в пропорции можно менять местами крайние и средние члены или те и другие одновременно.

Применяя это свойство, преобразуем уравнение к виду

Порядок дифференциального уравнения 3y y x5 равен,

после чего интегрируем обе части уравнения:

Порядок дифференциального уравнения 3y y x5 равен.

Оба интеграла — табличные, находим их:

Порядок дифференциального уравнения 3y y x5 равен

и получаем решение данного дифференциалного уравнения первого порядка:

Порядок дифференциального уравнения 3y y x5 равен.

Эта статья представила необходимый минимум сведений о дифференциальных уравнениях и их решениях и должна помочь вам уверенно и увлечённо перейти к изучению различных видов дифференциальных уравнений.

📹 Видео

Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Общее и частное решение дифференциального уравненияСкачать

Общее и частное решение дифференциального уравнения

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Дифференциальное уравнение от Бермана ★ Решите дифференциальное уравнение 2-го порядка ★ xy''=y'Скачать

Дифференциальное уравнение от Бермана ★ Решите дифференциальное уравнение 2-го порядка ★ xy''=y'

6. Дифференциальные уравнения, приводящиеся к однороднымСкачать

6. Дифференциальные уравнения, приводящиеся к однородным

1. Что такое дифференциальное уравнение?Скачать

1. Что такое дифференциальное уравнение?

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа

Как решить дифференциальное уравнение y' = (1 + y) * cos x?Скачать

Как решить дифференциальное уравнение y' = (1 + y) * cos x?

Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать

Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядка

ДУ Уравнения, не разрешенные относительно производнойСкачать

ДУ Уравнения, не разрешенные относительно производной
Поделиться или сохранить к себе: