Понятие о волновом уравнении шредингера

Видео:Урок 455. Уравнение ШрёдингераСкачать

Урок 455. Уравнение Шрёдингера

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

Понятие о волновом уравнении шредингера

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Видео:Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Понятие о волновом уравнении шредингера

Задачи атомной физики решаются методами квантовой теории, которая принципиально отличается от классической механики.

Решение задачи о движении тела макроскопических размеров основано на применении второго закона Ньютона. Если известны силы, действующие на тело, то сначала мы находим его ускорение, затем — траекторию, после чего — все параметры движения. Но в масштабах атомов понятие траектории теряет свой смысл. Своё значение сохраняют так называемые интегралы движения. К ним относятся, в первую очередь, энергия, импульс, момент вращения и чётность. В квантовой теории эти величины определяются сразу, минуя этап вычисления траектории.

В основе расчётов лежит уравнение Шредингера. Решив его, мы находим набор энергетических уровней, который реализуется в заданном потенциале, а также получаем информацию статистического характера о возможном положении частицы.

Видео:Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

8.1. Уравнение Шредингера

Уравнение Шредингера, как законы Ньютона и уравнения Максвелла, вывести нельзя. Оно основано на анализе экспериментальных данных и в масштабах атомов описывает волновые свойства частиц. Покажем связь уравнения Шредингера с волновым пакетом. Для этого запишем уравнение волнового пакета:

Понятие о волновом уравнении шредингера

где B — амплитуда. Будем считать, что величина B как функция k равна нулю при k Δ k и k > Δ k . Тогда областью интегрирования становится вся числовая ось. Вспоминая соотношения де Бройля-Эйнштейна (формулы (2.1) и (2.1а) первой главы), приходим к новой записи выражения для волнового пакета

Понятие о волновом уравнении шредингера Понятие о волновом уравнении шредингера

Продифференцируем (1.1) по времени:

Понятие о волновом уравнении шредингера

Появлению энергии в подынтегральной функции соответствует оператор дифференцирования

Понятие о волновом уравнении шредингера

Его называют оператором энергии . Импульс, в свою очередь, связан с оператором

Понятие о волновом уравнении шредингера

в чём можно убедиться, дифференцируя (1.1) по x :

Понятие о волновом уравнении шредингера

Мы рассматриваем нерелятивистскую частицу в отсутствие внешних полей, следовательно, ее энергия равна p2/2 m. Ей можно сопоставить оператор двойного дифференцирования по координате:

Понятие о волновом уравнении шредингера

Понятие о волновом уравнении шредингера

Вычитая (1.3) из (1.2), получим

Понятие о волновом уравнении шредингера

Всё подынтегральное выражение вместе с разностью Понятие о волновом уравнении шредингера равно нулю. Следовательно,

Понятие о волновом уравнении шредингера

Мы вывели одномерное уравнение Шредингера для свободной частицы. Теперь учтём возможное присутствие внешних полей:

Понятие о волновом уравнении шредингера

Здесь U = U( x , t ) — потенциальная энергия, зависящая только одной координаты. Вообще говоря, она может также меняться со временем. Соответственно, приходим к одномерному уравнению Шредингера:

Понятие о волновом уравнении шредингера

Обобщение на случай трёх измерений сводится к замене производной по x оператором Лапласа:

Понятие о волновом уравнении шредингера

Уравнение Шредингера с потенциалом, зависящим от всех трёх координат, имеет вид

Понятие о волновом уравнении шредингера

Вектору импульса в трёхмерном случае соответствует оператор градиента:

Понятие о волновом уравнении шредингера

где e x , e y и e z — единичные векторы в направлении координатных осей. В процессе вывода мы использовали следующие соотношения между физическими величинами и операторами:

Понятие о волновом уравнении шредингера

Оператор принято отмечать «шляпкой». Например, оператор, отвечающий физической величине G, обозначается как Ĝ. В квантовой механике вводится оператор энергии, или оператор Гамильтона

Понятие о волновом уравнении шредингера

Он позволяет записать уравнение Шредингера следующим образом:

Понятие о волновом уравнении шредингера

Уравнение Шредингера содержит мнимую единицу i , следовательно, его решение должно быть комплексным. Этим оно отличается от волнового уравнения в классической механике . В качестве примера рассмотрим одномерный случай. Классическое уравнение

Понятие о волновом уравнении шредингера

позволяет работать отдельно с действительной и мнимой частями Y , каждая из которых подчиняется одному и тому же уравнению. В самом деле, если

Понятие о волновом уравнении шредингера

где u и V — действительные функции, то уравнению (1.9), которое мы теперь запишем в виде

Понятие о волновом уравнении шредингера

равносильна система одинаковых уравнений, каждое из которых совпадает с исходным :

Понятие о волновом уравнении шредингера

Действительная и мнимая части Y разделились. Мы убедились, что в классическом случае нет принципиальной необходимости в комплексном представлении (хотя оно часто используется для удобства вычислений). Для уравнения Шредингера это не так. Разложение (1.10) вставим теперь в уравнение (1.4):

Понятие о волновом уравнении шредингера

Этому уравнению эквивалентна система

Понятие о волновом уравнении шредингера

в которой переменные u и V связаны друг с другом.

Структура уравнения Шредингера

показывает, что оно отображает закон сохранения энергии.

Уравнение Шредингера определяет зависимость волновой функции от времени и от координат. Как второй закон Ньютона описывает траекторию частицы, так уравнение Шредингера описывает эволюцию волновой функции.

Выход в комплексную плоскость является следствием требования, чтобы волновая функция в любой момент времени полностью определялась её начальным значением. Следовательно, уравнение Шредингера должно содержать только первую производную волновой функции по времени, но не вторую. Если ограничиться гармоническими функциями в действительной области, то волновое уравнение обязано содержать вторую производную. В самом деле, однократное дифференцирование переводит синус в косинус и наоборот. Но колебания могут быть описаны экспонентой с комплексным показателем. Её важное свойство заключается в том, что первая производная функции возвращает нас к ней самой:

Понятие о волновом уравнении шредингера

Перейдём к обсуждению физического смысла волновой функции.

Видео:Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | НаучпопСкачать

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | Научпоп

2.1. Волновая функция

Выкладки предыдущего раздела мы проводили, используя представление классической механики о волновом пакете. В уравнении Шредингера функция Y ( r , t ) приобретает новый смысл. Она называется волновой функцией и описывает уже не суперпозицию колебаний, но состояние реальной частицы. Перечислим основные свойства волновой функции.

Волновая функция как вероятность

В квантовой механике вся информация о частице содержится в её волновой функции. С учётом соотношения неопределённостей, эта информация носит вероятностный характер. А именно, квадрат модуля волновой функции пропорционален вероятности W найти частицу в данной точке в заданный момент времени:

Понятие о волновом уравнении шредингера

Здесь звёздочка означает комплексное сопряжение. В большинстве задач, которые нам встретятся в дальнейшем, имеет место точное равенство:

Понятие о волновом уравнении шредингера

Выбор между (2.1) и (2.2) определяется степенью локализации частицы в пространстве. Если вероятность найти частицу в удалённых точках исчезающе мала, то интеграл

Понятие о волновом уравнении шредингера

взятый по всему пространству, сходится. В конечном итоге именно это и делает возможным равенство (2.2). Наоборот, свободно движущаяся частица может быть обнаружена в любой точке. Интеграл (2.3) для её волновой функции расходится и, следовательно, | Y | 2 не может служить вероятностью никакой величины. В этом случае справедливо отношение

Понятие о волновом уравнении шредингера

которое является следствием (2.1). Ниже нам неоднократно будут встречаться волновые функции, модуль которых не стремится к нулю при удалении от начала координат, либо убывает слишком медленно. Хотя для таких функций не имеет смысла (2.2), тем не менее, отношение значений W в двух разных точках пространства равно отношению вероятностей обнаружить там частицу.

Принцип суперпозиции

Уравнение Шредингера линейно относительно волновой функции. Следовательно, любая линейная комбинация

Понятие о волновом уравнении шредингера

его решений Y 1 и Y 2 также является его решением.

Таким образом, линейная комбинация волновых функций обязательно описывает некоторое состояние частицы (или системы частиц). В частности, при C2 = 0 получаем, что решение уравнения Шредингера, известно с точностью до постоянного множителя.

Нормировка

Вероятность W по своему смыслу должна удовлетворять условию нормировки

Понятие о волновом уравнении шредингера

Если частица совершает своё движение в ограниченной области, то, согласно предыдущему разделу, существует интеграл:

Понятие о волновом уравнении шредингера

При выполнении последнего равенства волновая функция может быть преобразована так, чтобы условие

Понятие о волновом уравнении шредингера

имело место даже в том случае, когда константа C не равна единице. А именно, условию (2.7) удовлетворяет функция

Понятие о волновом уравнении шредингера

Согласно сказанному в предыдущем разделе, обе эти функции описывают одно и то же состояние. Процесс перехода от Y к F называется нормировкой, а функция F — норми p ованной волновой функцией.

Видео:Урок 32. Уравнение ШрёдингераСкачать

Урок 32. Уравнение Шрёдингера

8.3 Ток вероятности

В газодинамике известно уравнение непрерывности для потока вещества

Понятие о волновом уравнении шредингера

где r — плотность, а

Понятие о волновом уравнении шредингера

поток вещества, движущегося со скоростью v . Оно справедливо в том случае, если нет источников и стоков частиц. Аналогичное соотношение

Понятие о волновом уравнении шредингера

можно вывести и для плотности вероятности W . Сначала проведём расчёты для одномерного случая. Для определения вектора тока вероятности S воспользуемся уравнением Шредингера (1.4) для свободной частицы. Запишем его также для комплексно–сопряжённой волновой функции:

Понятие о волновом уравнении шредингера

Понятие о волновом уравнении шредингера

то, подставляя сюда выражения (1.4) и (3.4) для производных по времени от Y и Y *, находим

Понятие о волновом уравнении шредингера

Последнее уравнение представляет собой аналог одномерного уравнения непрерывности, если поток вероятности принять равным

Понятие о волновом уравнении шредингера

Обобщение на случай трёх измерений даёт уравнение непрерывности (3.3) с дивергенцией вектора

Понятие о волновом уравнении шредингера

Физический смысл определённого таким образом потока вероятности S можно выяснить, вычислив его для свободной частицы, то есть, для волновой функции вида

Понятие о волновом уравнении шредингера

Производная Понятие о волновом уравнении шредингера выражается через Y :

Понятие о волновом уравнении шредингера

Аналогично вычисляем производную от комплексно сопряжённой функции:

Понятие о волновом уравнении шредингера

Подставляя (3.7) и (3.7а) в (3.5), получаем

Понятие о волновом уравнении шредингера

Нетрудно убедиться, что в трёхмерном случае мы приходим к формуле

Понятие о волновом уравнении шредингера

Она полностью аналогична (3.2), где роль плотности выполняет плотность вероятности W, а вместо потока массы j надо подставить вектор S.

Поток вероятности равен нулю в случае действительной волновой функции. Следовательно, последняя описывает финитное движение, то есть, движение в ограниченной области пространства.

Видео:Уравнение ШрёдингераСкачать

Уравнение Шрёдингера

8.4 Операторы физических величин

В этом разделе мы соберём вместе явные выражения для самых важных для нас операторов. Оператор энергии сводится к дифференцированию по времени:

Понятие о волновом уравнении шредингера

а оператор проекции импульса на одну из координат — к дифференцированию по этой координате:

Понятие о волновом уравнении шредингера

Аналогичные формулы справедливы для проекций момента на две другие оси, а в трёхмерном случае

вектор импульса выражается через оператор градиента:

Понятие о волновом уравнении шредингера

При формировании операторов можно пользоваться соотношениями между классическими величинами. Так, оператор кинетической энергии Понятие о волновом уравнении шредингера с помощью соотношения

Понятие о волновом уравнении шредингера

выражается посредством оператора Лапласа:

Понятие о волновом уравнении шредингера

В отсутствие внешних полей полная энергия частицы равна её кинетической энергии:

Понятие о волновом уравнении шредингера

В квантовой механике этому факту соответствует уравнение Шредингера для свободной частицы:

Понятие о волновом уравнении шредингера

Понятие о волновом уравнении шредингера

Последняя формула является обобщением (1.4) на случай трёх измерений.

Оператор координаты сводится к простому умножению на эту координату. То же самое справедливо и для оператора, представляющего любую функцию координат. Например,

Понятие о волновом уравнении шредингера

В последующих разделах мы познакомимся с оператором момента вращения.

С математической точки зрения уравнения квантовой механики сводятся к линейной задаче на собственные значения с заданными граничными условиями.

Понятие о волновом уравнении шредингера

Здесь Y i — собственные функции, а G i — собственные значения оператора Понятие о волновом уравнении шредингера. Физический смысл (4.7) заключается в следующем. В результате измерения можно обнаружить только те значения физической величины, которые входят в спектр собственных значений её оператора.

Спектр собственных значений может быть как дискретным, так и непрерывным. Например, непрерывным является спектр импульса свободной частицы. Покажем это для одномерного случая. Вычислим собственное значение p проекции импульса на ось x :

Понятие о волновом уравнении шредингера
Понятие о волновом уравнении шредингера

Решение последнего уравнения

Понятие о волновом уравнении шредингера

в комплексной форме выражает «мгновенную фотографию» плоской монохроматической волны, распространяющейся вдоль оси x . Не удивительно, что мы получили именно такое решение, так как мы исходили из представления плоских волн при получении уравнения Шредингера. Временнýю часть волновой функции мы установим позже.

Отметим важную особенность функции (4.10): квадрат её модуля равен константе |C| 2 . Следовательно, свободно летящая частица с равной вероятностью может находиться в любой точке пространства. Как уже было сказано в разделе (2.1), такую функцию невозможно нормировать приведённым там способом. Таким образом, она представляет собой пример волновой функции, квадрат модуля которой пропорционален вероятности в смысле (2.4), но не имеет места (2.1).

Среднее значение.

В этом разделе мы с самого начала предполагаем, что волновая функция квадратично интегрируема, то есть существует интеграл (2.6). Как известно из математики, среднее значение Понятие о волновом уравнении шредингера функции координат f ( x ) определяется с помощью вероятности W( x ) как

Понятие о волновом уравнении шредингера

Для операторов, зависящих только от координат, это определение без всяких изменений переносится в квантовую механику. Нужно только вместо вероятности написать квадрат модуля волновой функции:

Понятие о волновом уравнении шредингера

Здесь интегрирование ведётся по всей области изменения аргумента x .

В общем случае, когда физическая величина G не является функцией координат (например, импульс), её среднее значение определяется как

Понятие о волновом уравнении шредингера

Подынтегральная функция состоит из двух сомножителей: Y * ( x ) и Понятие о волновом уравнении шредингера— результата воздействия оператора Понятие о волновом уравнении шредингера на функцию Y ( x ). Формула (4.11) является частным случаем (4.12), когда Понятие о волновом уравнении шредингера

Пусть система находится в определённом состоянии, соответствующем собственному значению G i и собственному вектору — волновой функции Y i . Если физическую величину G усреднять с помощью функции Y i , то среднее значение Понятие о волновом уравнении шредингера равно G i . В этом легко убедиться, подставив (4.7) в (4.12).

Видео:Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.Скачать

Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.

Понятие о волновом уравнении шредингера

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

Понятие о волновом уравнении шредингера(4.1)

где Понятие о волновом уравнении шредингера– оператор Гамильтона – аналог классической функции Гамильтона

Понятие о волновом уравнении шредингера

в которой Понятие о волновом уравнении шредингераи Понятие о волновом уравнении шредингеразаменены операторами импульса Понятие о волновом уравнении шредингераx, Понятие о волновом уравнении шредингераy, Понятие о волновом уравнении шредингераz и координаты Понятие о волновом уравнении шредингера, Понятие о волновом уравнении шредингера, Понятие о волновом уравнении шредингера:

Понятие о волновом уравнении шредингера

х → Понятие о волновом уравнении шредингера= х, y → Понятие о волновом уравнении шредингера= y, z → Понятие о волновом уравнении шредингера= z,

Понятие о волновом уравнении шредингера(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

Понятие о волновом уравнении шредингера

где Понятие о волновом уравнении шредингера– гамильтониан системы.

Разделение переменных. Запишем Ψ(Понятие о волновом уравнении шредингера,t) = ψ(Понятие о волновом уравнении шредингера)θ(t), где ψ является функцией координат, а θ – функция времени. Если Понятие о волновом уравнении шредингеране зависит от времени, тогда уравнение Понятие о волновом уравнении шредингераψ = iћψ принимает вид θПонятие о волновом уравнении шредингераψ = iћψθ или

Понятие о волновом уравнении шредингера

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

Понятие о волновом уравнении шредингера

θ(t) = exp(−iEt/ћ), Понятие о волновом уравнении шредингераψ(Понятие о волновом уравнении шредингера) = Eψ(Понятие о волновом уравнении шредингера) и Ψ(Понятие о волновом уравнении шредингера,t) = ψ(Понятие о волновом уравнении шредингера)exp(−iEt/ћ).

Уравнение Понятие о волновом уравнении шредингераψ(Понятие о волновом уравнении шредингера) = Eψ(Понятие о волновом уравнении шредингера) называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

Понятие о волновом уравнении шредингераили Понятие о волновом уравнении шредингера

Для трехмерной системы с массой m в поле с потенциалом U(Понятие о волновом уравнении шредингера):

−(ћ 2 /2m)Δψ(Понятие о волновом уравнении шредингера) + U(Понятие о волновом уравнении шредингера)ψ(Понятие о волновом уравнении шредингера) = Eψ(Понятие о волновом уравнении шредингера),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

Понятие о волновом уравнении шредингераψ(Понятие о волновом уравнении шредингера) = Eψ(Понятие о волновом уравнении шредингера).(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(Понятие о волновом уравнении шредингера,t) = ψ(Понятие о волновом уравнении шредингера)exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(Понятие о волновом уравнении шредингера,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

Понятие о волновом уравнении шредингера(4.5)

Понятие о волновом уравнении шредингера
Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

Понятие о волновом уравнении шредингера(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

Понятие о волновом уравнении шредингераn = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

Понятие о волновом уравнении шредингера

Понятие о волновом уравнении шредингера(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Понятие о волновом уравнении шредингера

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

Понятие о волновом уравнении шредингера(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

Понятие о волновом уравнении шредингера(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

Понятие о волновом уравнении шредингера Понятие о волновом уравнении шредингераn = 1, 2, …
Понятие о волновом уравнении шредингера

Одномерный гармонический осциллятор:

Понятие о волновом уравнении шредингераEn = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

Понятие о волновом уравнении шредингера(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

Понятие о волновом уравнении шредингера2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Понятие о волновом уравнении шредингераYlm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
Понятие о волновом уравнении шредингера
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента Понятие о волновом уравнении шредингера2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Понятие о волновом уравнении шредингера

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

Понятие о волновом уравнении шредингера

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

Понятие о волновом уравнении шредингера2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и Понятие о волновом уравнении шредингераzYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

Понятие о волновом уравнении шредингера(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Понятие о волновом уравнении шредингера

Рис. 4.4 Возможные ориентации вектора Понятие о волновом уравнении шредингерапри квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

Понятие о волновом уравнении шредингера=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление Понятие о волновом уравнении шредингерапо отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора Понятие о волновом уравнении шредингера, что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина Понятие о волновом уравнении шредингераи квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента Понятие о волновом уравнении шредингераи орбитальным квантовым числом l:

Понятие о волновом уравнении шредингера2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина Понятие о волновом уравнении шредингерана любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц Понятие о волновом уравнении шредингераявляется векторной суммой орбитального Понятие о волновом уравнении шредингераи спинового Понятие о волновом уравнении шредингерамоментов количества движения.

Понятие о волновом уравнении шредингера= Понятие о волновом уравнении шредингера+ Понятие о волновом уравнении шредингера.

Квадрат полного момента имеет значение:

Понятие о волновом уравнении шредингера2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов Понятие о волновом уравнении шредингераи Понятие о волновом уравнении шредингера, может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция Понятие о волновом уравнении шредингерана выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для Понятие о волновом уравнении шредингераи Понятие о волновом уравнении шредингераопределены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. Понятие о волновом уравнении шредингера2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии Понятие о волновом уравнении шредингера→ — Понятие о волновом уравнении шредингера(зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма Понятие о волновом уравнении шредингера
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

Понятие о волновом уравнении шредингера

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (Понятие о волновом уравнении шредингера→ —Понятие о волновом уравнении шредингера). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

Понятие о волновом уравнении шредингера

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

Понятие о волновом уравнении шредингера

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

Понятие о волновом уравнении шредингера

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

Понятие о волновом уравнении шредингера

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

Понятие о волновом уравнении шредингера

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона Понятие о волновом уравнении шредингераэлектронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

🎬 Видео

Лекция №4 "Волновая функция. Уравнение Шредингера" (Гавриков А.В.)Скачать

Лекция №4 "Волновая функция. Уравнение Шредингера" (Гавриков А.В.)

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший выводСкачать

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший вывод

В чем парадокс ЭФФЕКТА НАБЛЮДАТЕЛЯ? | Кот Шрёдингера и параллельные мирыСкачать

В чем парадокс ЭФФЕКТА НАБЛЮДАТЕЛЯ? | Кот Шрёдингера и параллельные миры

Что такое волновая функция? Душкин объяснитСкачать

Что такое волновая функция? Душкин объяснит

Простым Языком #1 Кот ШредингераСкачать

Простым Языком #1 Кот Шредингера

Петров С.В. - Квантовая механика - 7. Особенности решения уравнения ШредингераСкачать

Петров С.В. - Квантовая механика - 7. Особенности решения уравнения Шредингера

Сергей Сипаров. 2. Аналог уравнения Шредингера.Скачать

Сергей Сипаров. 2. Аналог уравнения Шредингера.

Квантовая физика простым языком - поймут всеСкачать

Квантовая физика простым языком - поймут все

Простое объяснение квантовой волновой функции с канала DoSСкачать

Простое объяснение квантовой волновой функции с канала DoS

Теория Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шрёдингера.Скачать

Теория Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шрёдингера.

96. Уравнение ШредингераСкачать

96. Уравнение Шредингера

Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"Скачать

Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"

Уравнение ШрёдингераСкачать

Уравнение Шрёдингера
Поделиться или сохранить к себе: