Получение в лаборатории и промышленности с уравнениями реакций метана

Метан: способы получения и свойства

Метан CH4 – это предельный углеводород, содержащий один атом углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, легче воды, нерастворим в воде и не смешивается с ней.

Содержание
  1. Гомологический ряд метана
  2. Строение метана
  3. Изомерия метана
  4. Химические свойства метана
  5. 1. Реакции замещения
  6. 1.1. Галогенирование
  7. 1.2. Нитрование метана
  8. 2. Реакции разложения метана (д егидрирование, пиролиз)
  9. 3. Окисление метана
  10. 3.1. Полное окисление – горение
  11. 3.2. Каталитическое окисление
  12. Получение метана
  13. 1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
  14. 2. Водный или кислотный гидролиз карбида алюминия
  15. 3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  16. 4. Синтез Фишера-Тропша
  17. 5. Получение метана в промышленности
  18. Получение метана в лаборатории и промышленности
  19. Общая характеристика метана
  20. Физические свойства
  21. Получение метана
  22. Промышленные методы получения метана
  23. Очистка и переработка природного газа
  24. Переработка нефти и попутного газа
  25. Переработка каменного угля
  26. Лабораторный синтез метана
  27. Взаимодействие карбида алюминия с водой (метод Муассана)
  28. Взаимодействие ацетата натрия с щелочью (метод Дюма)
  29. Получение метана в домашних условиях
  30. Получение из органических отходов животноводства
  31. Получение из древесины
  32. Эффективность синтеза биометана
  33. Метан в органическом синтезе
  34. Получение ацетилена из метана
  35. Получение метанола из метана
  36. Получение анилина из метана
  37. Заключение
  38. Примеры решения задач
  39. Способы получения метана с уравнением
  40. Метан: способы получения и свойства
  41. Гомологический ряд метана
  42. Строение метана
  43. Изомерия метана
  44. Химические свойства метана
  45. 1. Реакции замещения
  46. 1.1. Галогенирование
  47. 1.2. Нитрование метана
  48. 2. Реакции разложения метана (д егидрирование, пиролиз)
  49. 3. Окисление метана
  50. 3.1. Полное окисление – горение
  51. 3.2. Каталитическое окисление
  52. Получение метана
  53. 1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
  54. 2. Водный или кислотный гидролиз карбида алюминия
  55. 3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  56. 4. Синтез Фишера-Тропша
  57. 5. Получение метана в промышленности
  58. Получение метана в лаборатории и промышленности
  59. Общая характеристика метана
  60. Физические свойства
  61. Получение метана
  62. Промышленные методы получения метана
  63. Очистка и переработка природного газа
  64. Переработка нефти и попутного газа
  65. Переработка каменного угля
  66. Лабораторный синтез метана
  67. Взаимодействие карбида алюминия с водой (метод Муассана)
  68. Взаимодействие ацетата натрия с щелочью (метод Дюма)
  69. Получение метана в домашних условиях
  70. Получение из органических отходов животноводства
  71. Получение из древесины
  72. Эффективность синтеза биометана
  73. Метан в органическом синтезе
  74. Получение ацетилена из метана
  75. Получение метанола из метана
  76. Получение анилина из метана
  77. Заключение
  78. Примеры решения задач
  79. Acetyl

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Гомологический ряд метана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Строение метана

В молекуле метана встречаются связи C–H. Связь C–H ковалентная слабополярная. Это одинарная σ-связь. Атом углерода в метане образует четыре σ-связи. Следовательно, гибридизация атома углерода в молекуле метана– sp 3 :

Получение в лаборатории и промышленности с уравнениями реакций метана

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Получение в лаборатории и промышленности с уравнениями реакций метана

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Получение в лаборатории и промышленности с уравнениями реакций метана

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение в лаборатории и промышленности с уравнениями реакций метана

Видео:Получение метанаСкачать

Получение метана

Изомерия метана

Для метана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Видео:1.2. Алканы: Способы получения. Подготовка к ЕГЭ по химииСкачать

1.2. Алканы: Способы получения. Подготовка к ЕГЭ по химии

Химические свойства метана

Метан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для метана характерны только радикальные реакции.

Метан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Видео:Получение и изучение свойств метана. Опыт 1Скачать

Получение и изучение свойств метана. Опыт 1

1. Реакции замещения

Для метана характерны реакции радикального замещение.

1.1. Галогенирование

Метан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Получение в лаборатории и промышленности с уравнениями реакций метана

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

Бромирование протекает более медленно.

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Получение в лаборатории и промышленности с уравнениями реакций метана

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Получение в лаборатории и промышленности с уравнениями реакций метана

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

Получение в лаборатории и промышленности с уравнениями реакций метана

1.2. Нитрование метана

Метан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в метане замещается на нитрогруппу NO2.

Например. При нитровании метана образуется преимущественно нитрометан:

Видео:Получение алканов. 10 класс.Скачать

Получение алканов. 10 класс.

2. Реакции разложения метана (д егидрирование, пиролиз)

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Получение в лаборатории и промышленности с уравнениями реакций метана

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:Получение в лаборатории и промышленности с уравнениями реакций метана

Пиролиз метана – промышленный способ получения ацетилена.

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

3. Окисление метана

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Получение в лаборатории и промышленности с уравнениями реакций метана

Продукт реакции – так называемый «синтез-газ».

Видео:Метан. Состав. Строение. Свойства. Получение и применение метанаСкачать

Метан. Состав. Строение. Свойства. Получение и применение метана

Получение метана

Видео:ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок ХимииСкачать

ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок Химии

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета. Реакция больше подходит для получения симметричных алканов. Получить таким образом метан нельзя.

Видео:Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать

Химические свойства алканов | Химия ЕГЭ для 10 класса | Умскул

2. Водный или кислотный гидролиз карбида алюминия

Этот способ получения используется в лаборатории для получения метана.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

Получение в лаборатории и промышленности с уравнениями реакций метана

Видео:Химия 8 класс (Урок№11 - Кислород: получение, физические и химические свойства,применение. Оксиды.)Скачать

Химия 8 класс (Урок№11 - Кислород: получение, физические и химические свойства,применение. Оксиды.)

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить метан:

Видео:Химические свойства алканов. 1 часть. 10 класс.Скачать

Химические свойства алканов.  1 часть. 10 класс.

5. Получение метана в промышленности

В промышленности метан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Видео:Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать

Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Получение метана в лаборатории и промышленности

Простейшее углеводородное соединение – метан – используется в промышленности, на транспорте, в быту, находя широкое применение и как сырье для органического синтеза, и в качестве конечного продукта. Потребность в метане испытывают многие отрасли хозяйства, и его производство постоянно расширяется.

Видео:Проклятая химическая реакция 😜 #shortsСкачать

Проклятая химическая реакция 😜 #shorts

Общая характеристика метана

Метан представляет собой легкий бесцветный горючий газ без запаха. Распространен в природе как основной компонент природного газа и попутных нефтяных газов. Химическая формула – Получение в лаборатории и промышленности с уравнениями реакций метана.

В атмосферу метан поступает в составе вулканических газов, а также является продуктом жизнедеятельности ряда микроорганизмов. В форме газогидратов в значительных количествах содержится на дне океанов и в многолетней мерзлоте. Является одним из важнейших парниковых газов.

Как представитель ряда предельных углеводородов проявляет низкую химическую активность. Вследствие малой растворимости в воде и химической инертности метан считается малотоксичным веществом (класс опасности – IV), но при высокой концентрации в воздухе (4,4 — 17%) взрывоопасен, а дальнейшее повышение содержания метана приводит к удушью от недостатка кислорода.

Физические свойства

Основные физические характеристики метана при нормальном атмосферном давлении приведены в таблице.

Получение в лаборатории и промышленности с уравнениями реакций метана

Видео:6.2. Ароматические углеводороды (бензол и его гомологи): Способы получения. ЕГЭ по химииСкачать

6.2. Ароматические углеводороды (бензол и его гомологи): Способы получения. ЕГЭ по химии

Получение метана

Промышленное производство и получение метана в лаборатории проводятся разными методами. Существуют также способы получения газа в домашних условиях, например, в частном хозяйстве для удовлетворения потребности в топливе.

Промышленные методы получения метана

Поскольку газ в больших количествах поступает при добыче нефтегазового сырья, способы его производства нацелены не на искусственный синтез, а на выделение в процессах переработки нефти и газа. Кроме того, метан может быть получен при технологической обработке каменноугольного сырья.

Очистка и переработка природного газа

Метан – главный компонент такого важного вида горючих полезных ископаемых, как природный газ. Содержание метана в газе различных месторождений составляет 70-98%.

После очистки от твердых частиц и примесей (сероводород, азот, углекислый газ, гелий) и осушки (отделения водяных паров) природный газ подвергается низкотемпературному фракционированию. Более тяжелые углеводородные компоненты газа – этан, пропан и бутан – переходят в жидкую фазу при более высоких температурах, чем метан, и последовательно отделяются от него в конденсационной колонне.

Переработка нефти и попутного газа

В процессах термического разложения (пиролиза) высокомолекулярных алканов, входящих в состав нефти, в числе продуктов получают метан:

Получение в лаборатории и промышленности с уравнениями реакций метана

Метан входит в состав газа, отделяемого от сырой нефти в процессе крекинга (разложения при высоком давлении и температурах около 450 — 550 ℃ либо с использованием катализатора). Кроме того, метан составляет значительную долю попутных газов, от которых его отделяют методом сепарации.

Переработка каменного угля

  1. Коксование угля. Большое количество метана (в среднем 34%) содержится в коксовом газе, образующемся при термической переработке угольного сырья. В числе прочих углеводородов метан отделяется от шихты при .
  2. Гидрирование угля. Метан образуется при обработке угольной массы водородом (ожижение угля с целью получения жидкого топлива). Реакции идут на металлическом катализаторе:

Получение в лаборатории и промышленности с уравнениями реакций метана

Лабораторный синтез метана

В лабораторной практике используются два основных способа получения метана:

  1. гидролиз карбида алюминия;
  2. щелочное плавление ацетата натрия.

Взаимодействие карбида алюминия с водой (метод Муассана)

Неорганическое бинарное соединение Получение в лаборатории и промышленности с уравнениями реакций метанас кристаллической структурой в реакции с водой разлагается с образованием метана и нерастворимого гидроксида алюминия:

Получение в лаборатории и промышленности с уравнениями реакций метана

Реакция необратима и служит простым и удобным способом получения газа в лабораторных условиях.

Взаимодействие ацетата натрия с щелочью (метод Дюма)

Еще один простой лабораторный способ получения метана – прокаливание натриевой соли уксусной кислоты Получение в лаборатории и промышленности с уравнениями реакций метанас едким натром Получение в лаборатории и промышленности с уравнениями реакций метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Подробное рассмотрение лабораторного процесса показывает, как с помощью щелочи получить метан из ацетата натрия.

Присутствие воды препятствует этой реакции, поэтому уксуснокислый натрий должен быть обезвожен, а гигроскопичный гидроксид натрия – смешан с негашеной известью (оксидом кальция). Такая смесь носит название натронной извести. В реакционной смеси она должна присутствовать с избытком 1:3, чтобы обеспечить полное использование ацетата натрия.

Порошки реагентов хорошо перемешиваются и помещаются в колбу с отводной трубкой или в пробирку. Выделяющийся газ собирают по методу вытеснения воды в пробирку. При нагревании колбы на пламени горелки используется асбестовая сетка. Пробирку нагревают на открытом пламени. Для улавливания примесей может использоваться промывная склянка с раствором щелочи. Для проверки результата опыта газ в пробирке поджигается.

Варианты сборки прибора для получения метана в лаборатории изображены на рисунке.

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение метана в домашних условиях

Метан можно получать и как продукт биологических процессов. Он выделяется в ходе обмена веществ особыми анаэробными микроорганизмами – бактериями-метаногенами. Они широко распространены в органических отходах животного и растительного происхождения.

Поскольку метан может применяться в качестве горючего для водонагревательных установок, печей и кухонного оборудования, в частных хозяйствах, располагающих большим количеством отходов, становится выгодным самостоятельное получение из них метана и его использование.

Получение из органических отходов животноводства

Метаногены обитают в кишечном тракте позвоночных и принимают участие в пищеварительном процессе. Поэтому в хозяйствах, занимающихся разведением крупного рогатого скота, свиней или домашней птицы, отходы жизнедеятельности животных могут быть переработаны с помощью биогазовых установок. Неразложимый остаток служит органическим удобрением.

Технология получения биогенного метана состоит из нескольких этапов:

  1. анаэробное брожение биомассы в специальном резервуаре – ферментере, или биореакторе, с соблюдением температурного режима;
  2. отвод выделяющейся газовой смеси, в которой доля метана составляет до 70%;
  3. транспортировка биогаза к оборудованию-потребителю;
  4. регулярная выгрузка отработанной массы и загрузка биореактора новым сырьем.

Получение в лаборатории и промышленности с уравнениями реакций метана

В некоторых установках предусмотрена система очистки биогаза от примесей – углекислого газа и сероводорода.

Получение из древесины

В качестве сырья для биогазовой технологии могут использоваться и растительные отходы, такие как древесная щепа. Пригодна для использования в биореакторе некондиционная древесина (например, пораженная вредителями или пострадавшая от пожаров), а также отходы лесозаготовок – ветки, кора и пр.

Так как древесина содержит смолы, в установках по ее переработке нужно применять катализаторы для очистки газа. В качестве катализатора подходят шлаки металлургических производств, особенно эффективны мартеновские шлаки.

Получение в лаборатории и промышленности с уравнениями реакций метана

Эффективность синтеза биометана

В среднем переработка 1 кг биомассы, разложимой на 70%, дает:

Получение в лаборатории и промышленности с уравнениями реакций метана

Эффективность выработки биогаза зависит от поддержания нужной температуры ферментации, поэтому в холодных регионах работа биогазовой установки потребует дополнительных затрат на подогрев и устройство надежной теплоизоляции. Большую роль играет биохимическое равновесие: выход газа снижается при возрастании кислотности. В этом случае требуется добавление нейтрализующего агента.

Крупные фермерские хозяйства могут позволить себе привлечение специалистов, установку полностью автоматизированных биореакторов с большим выходом газа и получать дополнительный доход от его продажи.

Для эффективной работы установки необходимо бесперебойное поступление сырья, поэтому хозяйствам с малым количеством животных невыгодно заниматься производством биометана. Если количество биомассы позволяет наладить синтез газа в небольшом хозяйстве, мини-установку для его производства можно сделать собственными силами. Следует помнить, что ее сооружение потребует серьезных вложений, составления технологической схемы, оформления документации, согласования с СЭС, пожарной и газовой инспекциями.

Если хозяйство имеет возможность установить биогазовый реактор, оно получает существенные выгоды:

  • экономия при затратах на энергию;
  • производство удобрения;
  • ликвидация отходов и оздоровление экологической обстановки на участке.

Видео:Получение алкановСкачать

Получение алканов

Метан в органическом синтезе

Метан широко используется для получения многих востребованных соединений, таких как ацетилен, метанол или анилин.

Получение ацетилена из метана

В лабораторной практике проводится дегидрирование метана. Реакция требует сильного нагревания:

Получение в лаборатории и промышленности с уравнениями реакций метана

В промышленности используются такие методы, как:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Окислительный пиролиз (Заксе-процесс):

Получение в лаборатории и промышленности с уравнениями реакций метана

В этой реакции используется теплота частичного сгорания сырья, благодаря которой реакционная смесь разогревается до 1600 ℃ .

Получение метанола из метана

Метиловый спирт может быть получен:

  • Каталитическим окислением метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Двухступенчатым процессом, в ходе которого сначала получают хлорпроизводное метана, которое затем подвергается щелочному гидролизу:

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение анилина из метана

Ароматическое соединение анилин получают в несколько стадий:

  1. Крекинг метана:Получение в лаборатории и промышленности с уравнениями реакций метана
  2. Тримеризация ацетилена:Получение в лаборатории и промышленности с уравнениями реакций метана
  3. Нитрование бензола:Получение в лаборатории и промышленности с уравнениями реакций метана
  4. Восстановление нитробензола:Получение в лаборатории и промышленности с уравнениями реакций метана

Видео:3.2. Алкины: Способы полученияСкачать

3.2. Алкины: Способы получения

Заключение

Метан востребован во многих областях. Росту объемов его производства для различных нужд способствует достаточно высокая распространенность в природе. Однако метан производится не только на крупных промышленных предприятиях. Простота его получения с использованием биологических отходов стимулирует производство индивидуальными хозяйствами, что идет на пользу экологической обстановке, снижая бесконтрольное гниение отходов и выброс ценного продукта в атмосферу.

Видео:Химия 8 класс (Урок№13 - Водород: нахождение в природе, получение, его физ. и хим. свойства.)Скачать

Химия 8 класс (Урок№13 - Водород: нахождение в природе, получение, его физ. и хим. свойства.)

Примеры решения задач

1. Каков объем метана, выделяющегося при гидролизе карбида алюминия массой 12.5 г.?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Найдем количество карбида алюминия, вступающего в реакцию, по формуле Получение в лаборатории и промышленности с уравнениями реакций метана, где – n количество вещества, m– масса, M – молярная масса.

Получение в лаборатории и промышленности с уравнениями реакций метана

Из уравнения реакции видно, что Получение в лаборатории и промышленности с уравнениями реакций метана. Следовательно, количество метана равно:

Получение в лаборатории и промышленности с уравнениями реакций метана

Молярный объем газа Vm при нормальных условиях составляет Получение в лаборатории и промышленности с уравнениями реакций метана. Следовательно, объем метана будет равен:

Получение в лаборатории и промышленности с уравнениями реакций метана

2. Какова масса ацетата натрия, необходимого для получения 10 л метана?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Используя знание молярного объема газа, составим пропорцию:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим количество получаемого метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Из него следует, что количество ацетата натрия равно количеству метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Рассчитаем массу ацетата натрия по формуле m=nM.

Получение в лаборатории и промышленности с уравнениями реакций метана

3. Сколько граммов ацетата натрия затрачено на получение 60 г метана при выходе продукта реакции 75%?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Выход продукта равен отношению массы вещества, полученной на практике, к массе, рассчитанной по уравнению:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим расчетную массу метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Рассчитаем молярные массы ацетата натрия и метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Уравнение показывает, что количества вещества ацетата натрия и метана равны. Вычислим их:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим массу ацетата натрия:

Получение в лаборатории и промышленности с уравнениями реакций метана

Видео:Кислород. Физические свойства. Получение. Урок 17. Химия 7 класс.Скачать

Кислород. Физические свойства. Получение. Урок 17. Химия 7 класс.

Способы получения метана с уравнением

Метан: способы получения и свойства

Метан CH4 – это предельный углеводород, содержащий один атом углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, легче воды, нерастворим в воде и не смешивается с ней.

Гомологический ряд метана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алканаФормула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение метана

В молекуле метана встречаются связи C–H. Связь C–H ковалентная слабополярная. Это одинарная σ-связь. Атом углерода в метане образует четыре σ-связи. Следовательно, гибридизация атома углерода в молекуле метана– sp 3 :

Получение в лаборатории и промышленности с уравнениями реакций метана

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Получение в лаборатории и промышленности с уравнениями реакций метана

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Получение в лаборатории и промышленности с уравнениями реакций метана

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение в лаборатории и промышленности с уравнениями реакций метана

Изомерия метана

Для метана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства метана

Метан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для метана характерны только радикальные реакции.

Метан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

Для метана характерны реакции радикального замещение.

1.1. Галогенирование

Метан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Получение в лаборатории и промышленности с уравнениями реакций метана

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

Бромирование протекает более медленно.

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Получение в лаборатории и промышленности с уравнениями реакций метана

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Получение в лаборатории и промышленности с уравнениями реакций метана

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

Получение в лаборатории и промышленности с уравнениями реакций метана

1.2. Нитрование метана

Метан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в метане замещается на нитрогруппу NO2.

Например. При нитровании метана образуется преимущественно нитрометан:

2. Реакции разложения метана (д егидрирование, пиролиз)

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Получение в лаборатории и промышленности с уравнениями реакций метана

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:Получение в лаборатории и промышленности с уравнениями реакций метана

Пиролиз метана – промышленный способ получения ацетилена.

3. Окисление метана

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Получение в лаборатории и промышленности с уравнениями реакций метана

Продукт реакции – так называемый «синтез-газ».

Получение метана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета. Реакция больше подходит для получения симметричных алканов. Получить таким образом метан нельзя.

2. Водный или кислотный гидролиз карбида алюминия

Этот способ получения используется в лаборатории для получения метана.

3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

Получение в лаборатории и промышленности с уравнениями реакций метана

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить метан:

5. Получение метана в промышленности

В промышленности метан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Получение метана в лаборатории и промышленности

Простейшее углеводородное соединение – метан – используется в промышленности, на транспорте, в быту, находя широкое применение и как сырье для органического синтеза, и в качестве конечного продукта. Потребность в метане испытывают многие отрасли хозяйства, и его производство постоянно расширяется.

Общая характеристика метана

Метан представляет собой легкий бесцветный горючий газ без запаха. Распространен в природе как основной компонент природного газа и попутных нефтяных газов. Химическая формула – Получение в лаборатории и промышленности с уравнениями реакций метана.

В атмосферу метан поступает в составе вулканических газов, а также является продуктом жизнедеятельности ряда микроорганизмов. В форме газогидратов в значительных количествах содержится на дне океанов и в многолетней мерзлоте. Является одним из важнейших парниковых газов.

Как представитель ряда предельных углеводородов проявляет низкую химическую активность. Вследствие малой растворимости в воде и химической инертности метан считается малотоксичным веществом (класс опасности – IV), но при высокой концентрации в воздухе (4,4 — 17%) взрывоопасен, а дальнейшее повышение содержания метана приводит к удушью от недостатка кислорода.

Физические свойства

Основные физические характеристики метана при нормальном атмосферном давлении приведены в таблице.

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение метана

Промышленное производство и получение метана в лаборатории проводятся разными методами. Существуют также способы получения газа в домашних условиях, например, в частном хозяйстве для удовлетворения потребности в топливе.

Промышленные методы получения метана

Поскольку газ в больших количествах поступает при добыче нефтегазового сырья, способы его производства нацелены не на искусственный синтез, а на выделение в процессах переработки нефти и газа. Кроме того, метан может быть получен при технологической обработке каменноугольного сырья.

Очистка и переработка природного газа

Метан – главный компонент такого важного вида горючих полезных ископаемых, как природный газ. Содержание метана в газе различных месторождений составляет 70-98%.

После очистки от твердых частиц и примесей (сероводород, азот, углекислый газ, гелий) и осушки (отделения водяных паров) природный газ подвергается низкотемпературному фракционированию. Более тяжелые углеводородные компоненты газа – этан, пропан и бутан – переходят в жидкую фазу при более высоких температурах, чем метан, и последовательно отделяются от него в конденсационной колонне.

Переработка нефти и попутного газа

В процессах термического разложения (пиролиза) высокомолекулярных алканов, входящих в состав нефти, в числе продуктов получают метан:

Получение в лаборатории и промышленности с уравнениями реакций метана

Метан входит в состав газа, отделяемого от сырой нефти в процессе крекинга (разложения при высоком давлении и температурах около 450 — 550 ℃ либо с использованием катализатора). Кроме того, метан составляет значительную долю попутных газов, от которых его отделяют методом сепарации.

Переработка каменного угля

  1. Коксование угля. Большое количество метана (в среднем 34%) содержится в коксовом газе, образующемся при термической переработке угольного сырья. В числе прочих углеводородов метан отделяется от шихты при .
  2. Гидрирование угля. Метан образуется при обработке угольной массы водородом (ожижение угля с целью получения жидкого топлива). Реакции идут на металлическом катализаторе:

Получение в лаборатории и промышленности с уравнениями реакций метана

Лабораторный синтез метана

В лабораторной практике используются два основных способа получения метана:

  1. гидролиз карбида алюминия;
  2. щелочное плавление ацетата натрия.

Взаимодействие карбида алюминия с водой (метод Муассана)

Неорганическое бинарное соединение Получение в лаборатории и промышленности с уравнениями реакций метанас кристаллической структурой в реакции с водой разлагается с образованием метана и нерастворимого гидроксида алюминия:

Получение в лаборатории и промышленности с уравнениями реакций метана

Реакция необратима и служит простым и удобным способом получения газа в лабораторных условиях.

Взаимодействие ацетата натрия с щелочью (метод Дюма)

Еще один простой лабораторный способ получения метана – прокаливание натриевой соли уксусной кислоты Получение в лаборатории и промышленности с уравнениями реакций метанас едким натром Получение в лаборатории и промышленности с уравнениями реакций метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Подробное рассмотрение лабораторного процесса показывает, как с помощью щелочи получить метан из ацетата натрия.

Присутствие воды препятствует этой реакции, поэтому уксуснокислый натрий должен быть обезвожен, а гигроскопичный гидроксид натрия – смешан с негашеной известью (оксидом кальция). Такая смесь носит название натронной извести. В реакционной смеси она должна присутствовать с избытком 1:3, чтобы обеспечить полное использование ацетата натрия.

Порошки реагентов хорошо перемешиваются и помещаются в колбу с отводной трубкой или в пробирку. Выделяющийся газ собирают по методу вытеснения воды в пробирку. При нагревании колбы на пламени горелки используется асбестовая сетка. Пробирку нагревают на открытом пламени. Для улавливания примесей может использоваться промывная склянка с раствором щелочи. Для проверки результата опыта газ в пробирке поджигается.

Варианты сборки прибора для получения метана в лаборатории изображены на рисунке.

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение метана в домашних условиях

Метан можно получать и как продукт биологических процессов. Он выделяется в ходе обмена веществ особыми анаэробными микроорганизмами – бактериями-метаногенами. Они широко распространены в органических отходах животного и растительного происхождения.

Поскольку метан может применяться в качестве горючего для водонагревательных установок, печей и кухонного оборудования, в частных хозяйствах, располагающих большим количеством отходов, становится выгодным самостоятельное получение из них метана и его использование.

Получение из органических отходов животноводства

Метаногены обитают в кишечном тракте позвоночных и принимают участие в пищеварительном процессе. Поэтому в хозяйствах, занимающихся разведением крупного рогатого скота, свиней или домашней птицы, отходы жизнедеятельности животных могут быть переработаны с помощью биогазовых установок. Неразложимый остаток служит органическим удобрением.

Технология получения биогенного метана состоит из нескольких этапов:

  1. анаэробное брожение биомассы в специальном резервуаре – ферментере, или биореакторе, с соблюдением температурного режима;
  2. отвод выделяющейся газовой смеси, в которой доля метана составляет до 70%;
  3. транспортировка биогаза к оборудованию-потребителю;
  4. регулярная выгрузка отработанной массы и загрузка биореактора новым сырьем.

Получение в лаборатории и промышленности с уравнениями реакций метана

В некоторых установках предусмотрена система очистки биогаза от примесей – углекислого газа и сероводорода.

Получение из древесины

В качестве сырья для биогазовой технологии могут использоваться и растительные отходы, такие как древесная щепа. Пригодна для использования в биореакторе некондиционная древесина (например, пораженная вредителями или пострадавшая от пожаров), а также отходы лесозаготовок – ветки, кора и пр.

Так как древесина содержит смолы, в установках по ее переработке нужно применять катализаторы для очистки газа. В качестве катализатора подходят шлаки металлургических производств, особенно эффективны мартеновские шлаки.

Получение в лаборатории и промышленности с уравнениями реакций метана

Эффективность синтеза биометана

В среднем переработка 1 кг биомассы, разложимой на 70%, дает:

Получение в лаборатории и промышленности с уравнениями реакций метана

Эффективность выработки биогаза зависит от поддержания нужной температуры ферментации, поэтому в холодных регионах работа биогазовой установки потребует дополнительных затрат на подогрев и устройство надежной теплоизоляции. Большую роль играет биохимическое равновесие: выход газа снижается при возрастании кислотности. В этом случае требуется добавление нейтрализующего агента.

Крупные фермерские хозяйства могут позволить себе привлечение специалистов, установку полностью автоматизированных биореакторов с большим выходом газа и получать дополнительный доход от его продажи.

Для эффективной работы установки необходимо бесперебойное поступление сырья, поэтому хозяйствам с малым количеством животных невыгодно заниматься производством биометана. Если количество биомассы позволяет наладить синтез газа в небольшом хозяйстве, мини-установку для его производства можно сделать собственными силами. Следует помнить, что ее сооружение потребует серьезных вложений, составления технологической схемы, оформления документации, согласования с СЭС, пожарной и газовой инспекциями.

Если хозяйство имеет возможность установить биогазовый реактор, оно получает существенные выгоды:

  • экономия при затратах на энергию;
  • производство удобрения;
  • ликвидация отходов и оздоровление экологической обстановки на участке.

Метан в органическом синтезе

Метан широко используется для получения многих востребованных соединений, таких как ацетилен, метанол или анилин.

Получение ацетилена из метана

В лабораторной практике проводится дегидрирование метана. Реакция требует сильного нагревания:

Получение в лаборатории и промышленности с уравнениями реакций метана

В промышленности используются такие методы, как:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Окислительный пиролиз (Заксе-процесс):

Получение в лаборатории и промышленности с уравнениями реакций метана

В этой реакции используется теплота частичного сгорания сырья, благодаря которой реакционная смесь разогревается до 1600 ℃ .

Получение метанола из метана

Метиловый спирт может быть получен:

  • Каталитическим окислением метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

  • Двухступенчатым процессом, в ходе которого сначала получают хлорпроизводное метана, которое затем подвергается щелочному гидролизу:

Получение в лаборатории и промышленности с уравнениями реакций метана

Получение анилина из метана

Ароматическое соединение анилин получают в несколько стадий:

  1. Крекинг метана:Получение в лаборатории и промышленности с уравнениями реакций метана
  2. Тримеризация ацетилена:Получение в лаборатории и промышленности с уравнениями реакций метана
  3. Нитрование бензола:Получение в лаборатории и промышленности с уравнениями реакций метана
  4. Восстановление нитробензола:Получение в лаборатории и промышленности с уравнениями реакций метана

Заключение

Метан востребован во многих областях. Росту объемов его производства для различных нужд способствует достаточно высокая распространенность в природе. Однако метан производится не только на крупных промышленных предприятиях. Простота его получения с использованием биологических отходов стимулирует производство индивидуальными хозяйствами, что идет на пользу экологической обстановке, снижая бесконтрольное гниение отходов и выброс ценного продукта в атмосферу.

Примеры решения задач

1. Каков объем метана, выделяющегося при гидролизе карбида алюминия массой 12.5 г.?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Найдем количество карбида алюминия, вступающего в реакцию, по формуле Получение в лаборатории и промышленности с уравнениями реакций метана, где – n количество вещества, m– масса, M – молярная масса.

Получение в лаборатории и промышленности с уравнениями реакций метана

Из уравнения реакции видно, что Получение в лаборатории и промышленности с уравнениями реакций метана. Следовательно, количество метана равно:

Получение в лаборатории и промышленности с уравнениями реакций метана

Молярный объем газа Vm при нормальных условиях составляет Получение в лаборатории и промышленности с уравнениями реакций метана. Следовательно, объем метана будет равен:

Получение в лаборатории и промышленности с уравнениями реакций метана

2. Какова масса ацетата натрия, необходимого для получения 10 л метана?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Используя знание молярного объема газа, составим пропорцию:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим количество получаемого метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Из него следует, что количество ацетата натрия равно количеству метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Рассчитаем массу ацетата натрия по формуле m=nM.

Получение в лаборатории и промышленности с уравнениями реакций метана

3. Сколько граммов ацетата натрия затрачено на получение 60 г метана при выходе продукта реакции 75%?

Запишем уравнение реакции:

Получение в лаборатории и промышленности с уравнениями реакций метана

Выход продукта равен отношению массы вещества, полученной на практике, к массе, рассчитанной по уравнению:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим расчетную массу метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Рассчитаем молярные массы ацетата натрия и метана:

Получение в лаборатории и промышленности с уравнениями реакций метана

Уравнение показывает, что количества вещества ацетата натрия и метана равны. Вычислим их:

Получение в лаборатории и промышленности с уравнениями реакций метана

Вычислим массу ацетата натрия:

Получение в лаборатории и промышленности с уравнениями реакций метана

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

Получение в лаборатории и промышленности с уравнениями реакций метана

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Поделиться или сохранить к себе: