Получение турнбулевой сини уравнение реакции

Видео:Химия | Тепловой эффект химической реакции (энтальпия)Скачать

Химия | Тепловой эффект химической реакции (энтальпия)

ЛАЗУРЬ БЕРЛИНСКАЯ

ЛАЗУРЬ БЕРЛИНСКАЯ. Краситель замечательного синего цвета с таким поэтическим названием появился в Германии около двухсот лет назад. Точных данных о времени и авторе его открытия не сохранилось: об этом не было никаких научных публикаций, сохранялся в тайне и способ получения нового вещества. Полагают, что берлинская лазурь была случайно получена в начале 18 в. в Берлине красильным мастером Дизбахом. В своем производстве он использовал поташ (карбонат калия К2СО3) и однажды раствор поташа неожиданно дал с солями железа красивое синее окрашивание. При проверке оказалось, что поташ из этой партии был ранее прокален в сосуде, в котором была бычья кровь. Осадок, который давал этот поташ с солями железа, представлял собой после высушивания темно-синюю массу с красновато-медным металлическим блеском. Попытка использовать это вещество для окрашивания тканей оказалась удачной. Краска была относительно дешевой, неядовитой, устойчивой к слабым кислотам, а главное – она обладала исключительно интенсивным цветом. Например, для получения голубой краски достаточно было на 200 частей белил взять всего одну часть нового пигмента, т.е. в девять раз меньше, чем традиционного ультрамарина. Новая краска, названная берлинской лазурью и сулившая большие выгоды ее обладателям, быстро вытеснила прежний ультрамарин, ее использовали в красильном и печатном деле, для изготовления синих чернил, масляных и акварельных красок, а в смеси с желтыми пигментами можно было получить широкую гамму зеленых цветов. Неудивительно, что способ получения берлинской лазури долгое время держали в секрете.

Секрет был раскрыт спустя два десятилетия английским врачом, естествоиспытателем и геологом Джоном Вудвордом. Теперь краску мог получить каждый желающий: для этого надо было прокалить с карбонатом калия сухую кровь, полученную с боен, обработать плав водой, добавить к раствору железный купорос с алюмокалиевыми квасцами и, наконец, подействовать на смесь соляной кислотой. Позднее французский химик Пьер Жозеф Макёр установил, что вместо крови можно использовать рог, кожу, шерсть и другие животные остатки, но что при этом происходит, оставалось невыясненным.

Механизм химических процессов, приводящих к образованию берлинской лазури, в общих чертах стал понятен гораздо позднее, в 19 в., благодаря работам многих ученых, среди которых был виднейший немецкий химик Юстус Либих. Животные остатки, и это было уже тогда хорошо известно, содержат азот и серу. Для получения красителя карбонат калия начали прокаливать при высокой температуре в больших чугунных сосудах, в которые еще специально добавляли железные опилки или стружки. В этих условиях карбонат калия частично превращался в цианид калия, а сера давала с железом сульфид. Если обработать такой плав горячей водой, то цианид калия прореагирует с сульфидом железа и образуется раствор желтой кровяной соли (гексацианоферрата(II) калия): 6KCN + FeS ® K4[Fe(CN)6] + K2S. Использование в этом процессе животных остатков объясняет тривиальное название (см. ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) этого комплексного соединения железа – «кровяная соль»; немецкий химик 18 в. Андреас Сигизмунд Маргграф назвал ее «щелочью, воспламененной бычьей кровью». А в названии «цианид» был использован греческий корень (от греч. kyanos – голубой, лазурный). Впоследствии были разработаны «бескровные» методы получения берлинской лазури.

Получение турнбулевой сини уравнение реакции

Дальнейшие операции получения берлинской лазури были довольно простыми, и их легко воспроизвести, исходя из желтой кровяной соли. Если к ее горячему водному раствору добавить раствор железного купороса, то выпадет белый осадок, который быстро синеет на воздухе в результате окисления кислородом воздуха. Чтобы ускорить окисление, применяли также хлор или азотную кислоту. Еще проще было получить берлинскую лазурь непосредственным смешением растворов желтой кровяной соли и солей Fe 3+ . В таком случае не было необходимости проводить дополнительное окисление.

В зависимости от способа проведения этой реакции краситель получали либо в виде нерастворимого осадка, либо в виде коллоидного раствора, который получается, например, при промывании осадка большим количеством воды или в присутствии щавелевой кислоты. Коллоидный раствор получил название «растворимой берлинской лазури». Были у красителя и другие названия. Так, очищенное вещество в 19 в. поступало в продажу под названием «парижская лазурь», его смесь с желтой краской называли «прусской зеленью», а прокаливанием получали «жженую берлинскую лазурь» – красновато-коричневый порошок, мало отличающийся по составу от простого оксида железа Fe2O3. Можно было встретить и другие торговые названия берлинской лазури: прусская лазурь, железная лазурь, гамбургская синь, нейблау, милори и другие, но все они в своей основе содержали одно и то же вещество.

Однако со временем выяснилось, что краски на основе берлинской лазури не так уж хороши, как казались вначале: они очень неустойчивы по отношению к щелочам, под действием которых разлагаются с выделением гидроксида железа Fe(OH)3, и поэтому не пригодны для красок, имеющих щелочную реакцию, и для окраски по известковой штукатурке. Поэтому в настоящее время берлинская лазурь имеет лишь ограниченное практическое применение – ее используют, например, для получения печатной краски, синей копирки, подкрашивания бесцветных полимеров типа полиэтилена. Зато сама реакция образования берлинской лазури уже более 200 лет с успехом используется в аналитической химии. Еще в 1751 А.С.Маргграф с помощью этой чувствительной реакции обнаружил железо в различных соединениях щелочноземельных металлов, встречающихся в природе: известняке, флюорите, кораллах, костях и даже. в желчных камнях быков. А в 1784 ирландский химик Ричард Кирван впервые предложил использовать водный раствор гексацианоферрата(II) калия с точно известной концентрацией в качестве стандартного раствора для определения железа.

В 1822 немецкий химик Леопольд Гмелин окислением желтой кровяной соли хлором получил красную кровяную соль K3[Fe(CN)6] (в отличие от «желтой соли», она содержит железо в степени окисления +3). Раньше это вещество называли солью Гмелина или красной красильной солью. Оказалось, что раствор этой соли тоже дает вещество, окрашенное в интенсивный синий цвет, но только в реакции с солями Fe 2+ . Продукт реакции назвали турнбулевой синью (раньше писали и «турнбуллева», и «турнбуллова», а в Основах химии Д.И.Менделеева и в энциклопедии Брокгауза и Ефрона можно встретить «турнбульскую лазурь»). Впервые эта «синь» была получена только после открытия Гмелина и названа по имени одного из основателей фирмы «Артур и Турнбуль», которая в конце 18 в. занималась изготовлением химических продуктов для красильщиков в одном из предместий Глазго (Шотландия). Знаменитый английский химик Уильям Рамзай, первооткрыватель инертных газов, лауреат Нобелевской премии, предполагал, что турнбулеву синь открыл его дед – потомственный красильщик и компаньон фирмы «Артур и Турнбуль».

По внешнему виду турнбулева синь была очень похожа на берлинскую лазурь, и ее тоже можно было получать в виде нерастворимой и растворимой (коллоидной) формы. Особого применения этот синтез не нашел, так как красная кровяная соль дороже желтой. Вообще долгие годы эффективность способа получения «кровяных солей» была очень низкой. При прокаливании органических остатков азот, содержащийся в белках и нуклеиновых кислотах, терялся в виде аммиака, летучей синильной кислоты, различных органических соединений, и лишь 10–20% его переходило в продукт реакции – K4[Fe(CN)6]. Тем не менее, этот способ оставался единственным в течение почти 150 лет, до 1860-х, когда научились выделять цианистые соединения из доменного и коксового газов.

Комплексные ферроцианиды железа нашли широкое применение для качественного анализа растворов на присутствие даже очень малых количеств ионов Fe 2+ и Fe 3+ : синее окрашивание можно заметить, даже если в литре раствора содержится всего 0,7 мг железа! Соответствующие реакции приводятся во всех учебниках аналитической химии. Раньше (а иногда и сейчас) их записывали так: реакция на ионы Fe 3+ : 4FeCl3 + 3K4[Fe(CN)6] ® Fe4[Fe(CN)6]3 + 12KCl (образуется берлинская лазурь); реакция на ионы Fe 2+ : 3FeCl2 + 2K3[Fe(CN)6] ® Fe3[Fe(CN)6]2 + 6KCl (образуется турнбулева синь). Однако в 20 в. было установлено, что берлинская лазурь и турнбулева синь – это одно и то же вещество! Как же оно получается, и каков его состав?

Еще в 19 в. в результате многочисленных химических анализов было показано, что состав продуктов может зависеть как от соотношения исходных реагентов, так и от способа проведения реакции. Было ясно, что определение только элементного состава красителей не даст ответа на вопрос, что же получается на самом деле при взаимодействии ионов железа разной степени окисления с двумя гексацианоферратами калия. Нужно было применить современные методы установления состава неорганических соединений. При этом, в основном, исследовались растворимые формы обоих красителей состава KFe[Fe(CN)6], которые легче было очистить. Когда в 1928 были измерены магнитные моменты, а в 1936 получены рентгенограммы порошков, стало ясно, что очищенные берлинская лазурь и турнбулева синь – это действительно одно и то же соединение, которое содержит два типа атомов железа в разных степенях окисления, +2 и +3. Однако различить в то время структуры KFe II [Fe III (CN)6] и KFe III [Fe II (CN)6] и установить таким образом истинное строение вещества было невозможно. Это удалось сделать только во второй половине 20 в. с помощью современных физико-химических методов исследования: оптической спектроскопии, инфракрасной спектроскопии и гамма-резонансной (мёссбауэровской) спектроскопии. В последнем случае были специально получены осадки, меченные нуклидами железа 57 Fe. В результате было установлено, что в различных цианидах железа атомы Fe II окружены шестью атомами углерода, а в ближайшем соседстве с атомами Fe III находятся только атомы азота. Это означает, что шесть цианидных ионов в красителе связаны всегда с атомами железа(II), то есть правильны формулы KFe III [Fe II (CN)6] для растворимой формы и Fe4 III [Fe II (CN)6]3 – для нерастворимой формы «лазури» или «сини», независимо от того, получены ли они из FeCl2 и K3[Fe(CN)6] или из FeCl3 и K4[Fe(CN)6].

Как же можно объяснить эти результаты? Оказывается, при получении турнбулевой сини, когда смешиваются растворы, содержащие ионы Fe 2+ и [Fe(CN)6] 3– , происходит окислительно-восстановительная реакция; реакция эта самая простая из всех окислительно-восстановительных процессов, поскольку в ходе ее не происходит перемещения атомов, а просто один электрон с иона Fe 2+ переходит к иону [Fe(CN)6] 3– , и в результате получаются ионы Fe 3+ и [Fe(CN)6] 4 . Нерастворимая форма берлинской лазури преподнесла еще один сюрприз: будучи полупроводником, она при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком – уникальное свойство среди координационных соединений металлов.

А какие реакции шли при старинном способе получения берлинской лазури? Если смешать в отсутствие окислителей растворы железного купороса и желтой кровяной соли, то получится белый осадок – соль Эверитта, состав которой соответствует формуле K2Fe II [Fe II (CN)6]. Эта соль очень легко окисляется и поэтому быстро синеет даже на воздухе, превращаясь в берлинскую лазурь.

До введения современной номенклатуры неорганических соединений многие из них имели множество названий, в которых впору было запутаться. Так, вещество с формулой K4[Fe(CN)6] называли и желтой кровяной солью, и железистосинеродистым калием, и ферроцианидом калия, и гексацианоферратом(II) калия, тогда как K3[Fe(CN)6] называли красной кровяной солью, или железосинеродистым калием, или феррицианидом калия, или гесацианоферратом(III) калия. Современная систематическая номенклатура использует последние названия в каждом ряду.

Обе кровяные соли в настоящее время входят в состав преобразователей ржавчины (они превращают продукты коррозии в нерастворимые соединения). Красную кровяную соли применяют в качестве мягкого окислителя (например, в отсутствие кислорода фенолы окисляются до свободных ароксильных радикалов); как индикатор при титровании, в фотографических рецептурах и как реагент для обнаружения ионов лития и олова. Желтую кровяную соль применяют при производстве цветной бумаги, как компонент ингибирующих покрытий, для цианирования стали (при этом ее поверхность насыщается азотом и упрочняется), как реагент для обнаружения ионов цинка и меди. Окислительно-восстановительные свойства этих соединений можно продемонстрировать на таком интересном примере. Желтая кровяная соль легко окисляется до красной растворами пероксида водорода: 2K4[Fe(CN)6] + H2O2 + 2HCl ® 2K3[Fe(CN)6] + 2KCl + 2H2O. Но, оказывается, что с помощью этого же реактива можно снова восстановить красную соль до желтой (правда, на этот раз – в щелочной среде): 2K3[Fe(CN)6] + H2O2 + 2KOH ® 2K4[Fe(CN)6] + 2H2O + O2. Последняя реакция – пример так называемого восстановительного распада пероксида водорода под действием окислителей.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Глущенко Валерия. Берлинская лазурь и турнбулева синь. Синтез кристаллогидрата KFeIII[FeII(CN)6]*H2O двумя способами и сравнение внешних отличий

Научный рук-ль: Н.И. Морозова, СУНЦ МГУ

Получение турнбулевой сини уравнение реакцииПолучение турнбулевой сини уравнение реакции

В начале 18 века соединения железа были известны и ценились в качестве красителей и красок для живописи. Берлинская лазурь стала первым синтезированным синтетическим пигментом. Она стала менее дорогим и более простым в производстве аналогом другими красителям синего цвета. В то же время появился новый синтетический краситель «турнбулева синь», который получали по схожей методике, но из несколько других реактивов. Позже с помощью -резонансных спектров было доказано, что берлинская лазурь и турнбулева синь являются гидратированным комплексом KFe[Fe(CN)6].

Цель работы: синтезировать берлинскую лазурь (из соли Fe III и [Fe II (CN)6] 4- ) и турнбулеву синь (из соли Fe II и [Fe III (CN)6] 3- ). Зафиксировать внешний вид осадков и определить примерное время, когда обе краски станут неотличимы.

Для получения красителей были приготовлены растворы эквивалентного количества Fe2(SO4)3 и желтой кровяной соли, или K4[Fe(CN)6]; соли Мора, или FeSO4·(NH4)2SO4·6H2O и красной кровяной соли, или K3[Fe(CN)6]. Растворы слили в чистый стакан. Реакции протекают согласно уравнениям:

Растворы оставили на неделю. После обе краски отфильтровали от лишней воды с помощью воронки Бюхнера до консистенции, похожей на акриловую краску. Сразу после фильтрации необходимо переложить обе краски в какую-либо ёмкость, иначе после сушки невозможно будет отсоединить их от фильтровальной бумаги.

Экспериментально было доказано, что после сливания соответствующих растворов разница в осадках очевидна. Турнбулева синь изначально обладала более глубоким цветом и казалась плотнее берлинской лазури. После недели, на которую были оставлены растворы, отличия в цвете ушли, но из-за кристаллов, образовавшихся на стенках стаканов, все еще можно было различить образцы. В процессе фильтрации и дальнейшей сушки образцов разница стала минимальной. После полного высыхания обе краски стали идентичны.

Список литературы

  • Уэллс А. Структурная неорганическая химия: В 3-х т. Т. 3. с. 42-43
  • Alexander Kraft On the Discovery and History of Prussian Blue (2008). Bull. Hist. Chem. Volume 33 p. 61-65
  • Алексеев В. Н. Курс качественного химического полумикроанализа, 1973. с. 331-332

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Получение турнбулевой сини уравнение реакции

RE: Что такое турнбулева синь? (Написать сообщение)

Берлинская лазурь — синий пигмент, смесь гексацианоферратов (II) от KFe[Fe(CN)₆] до Fe₄[Fe(CN)₆]₃. Получаемая другими способами турнбулева синь, для которой следовало бы ожидать формулы Fe₃[Fe(CN)₆]₂, в действительности представляет собой ту же смесь веществ.

Метод приготовления держался в секрете до момента публикации способа производства англичанином Вудвордом в 1724 г.

Берлинскую лазурь можно получить, добавляя к растворам гексацианоферрата (II) калия («жёлтой кровяной соли») соли трёхвалентного железа. При этом в зависимости от условий проведения, реакция может идти по уравнениям:

FeIIICl3 + K4[FeII(CN)6] → KFeIII[FeII(CN)6] + 3KCl,

или, в ионной форме

Fe3+ + [Fe(CN)6]4− → Fe[Fe(CN)6]−

Получающийся гексацианоферрат(II) калия-железа(III) растворим, поэтому носит название «растворимая берлинская лазурь».

В структурной схеме растворимой берлинской лазури (кристаллогидрата вида KFeIII[FeII(CN)6]·H2O) атомы Fe2+ и Fe3+ располагаются в кристаллической решётке однотипно, однако по отношению к цианидным группам они неравноценны, преобладает тенденция к размещению между атомами углерода, а Fe3+ — между атомами азота.

4FeIIICl3 + 3K4[FeII(CN)6] → FeIII4[FeII(CN)6]3↓ + 12KCl,

или, в ионной форме

4Fe3+ + 3[Fe(CN)6]4− → FeIII4[FeII(CN)6]3↓

Образующийся нерастворимый (растворимость 2·10−6 моль/л) осадок гексацианоферрата (II) железа (III) носит название «нерастворимая берлинская лазурь».

Приведённые выше реакции используются в аналитической химии для определения наличия ионов Fe3+

Ещё один способ состоит в добавлении к растворам гексацианоферрата (III) калия («красной кровяной соли») солей двухвалентного железа. Реакция идёт также с образованием растворимой и нерастворимой формы (см. выше), например, по уравнению (в ионной форме):

4Fe2+ + 3[Fe(CN)6]3− → FeIII4[FeII(CN)6]3↓

Ранее считалось, что при этом образуется гексацианоферрат (III) железа (II), то есть FeII3[Fe(CN)6]2, именно такую формулу предлагали для «турнбулевой сини». Теперь известно (см. выше), что турнбулева синь и берлинская лазурь — одно и то же вещество, а в процессе реакции происходит переход электронов от ионов Fe2+ к гексацианоферрат (III)- иону (валентная перестройка Fe2+ + [Fe3+(CN)6] к Fe3+ + [Fe2+(CN)6] происходит практически мгновенно, обратную реакцию можно осуществить в вакууме при 300 °C).

Эта реакция также является аналитической и используется, соответственно, для определения ионов Fe2+.

При старинном методе получения берлинской лазури, когда смешивали растворы жёлтой кровяной соли и железного купороса, реакция шла по уравнению:

FeIISO4 + K4[FeII(CN)6] → K2FeII[FeII(CN)6] + K2SO4.

Получившийся белый осадок гексацианоферрата (II) калия-железа (II) (соль Эверитта) быстро окисляется кислородом воздуха до гексацианоферрата (II) калия-железа (III), то есть берлинской лазури

Термическое разложение берлинской лазури идёт по схемам:

3Fe4[Fe(CN)6]3 →(t) 6(CN)2 + 7Fe2[Fe(CN)6]

Fe2[Fe(CN)6] →(t) 3N2 + Fe3C + 5C

Интересным свойством нерастворимой формы берлинской лазури является то, что она, будучи полупроводником, при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком — уникальное свойство среди координационных соединений металлов.

🔥 Видео

Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.Скачать

Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.

Опыты по химии. Качественные реакции на ионы железа (II) и (III)Скачать

Опыты по химии. Качественные реакции на ионы железа (II) и (III)

Осадки: цвета и качественные реакцииСкачать

Осадки: цвета и качественные реакции

Качественная реакция на ион трехвалентного железаСкачать

Качественная реакция на ион трехвалентного железа

Решение цепочек превращений по химииСкачать

Решение цепочек превращений по химии

25. Схема реакции и химическое уравнениеСкачать

25. Схема реакции и химическое уравнение

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

Получение алканов. Реакция Кольбе (механизм + сложные случаи). ЕГЭ по химии.Скачать

Получение алканов. Реакция Кольбе (механизм + сложные случаи). ЕГЭ по химии.

Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.

Аммиак: как образуется и с чем реагирует? #аммиак #химия #видеоурок #егэхимияСкачать

Аммиак: как образуется и с чем реагирует? #аммиак #химия #видеоурок #егэхимия

Реакция нейтрализации. Урок 26. Химия 7 класс.Скачать

Реакция нейтрализации. Урок 26. Химия 7 класс.

Как написать уравнения реакции полимеризации?Скачать

Как написать уравнения реакции полимеризации?

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.

Расстановка коэффициентов в окислительно-восстановительных реакцияхСкачать

Расстановка коэффициентов в окислительно-восстановительных реакциях

78. Что такое реакции полимеризацииСкачать

78. Что такое реакции полимеризации

Окисление Гексацианоферрата(2) Калия K4[Fe(CN)6] До Гексацианоферрата(3) Калия K3[Fe(CN)6]Скачать

Окисление Гексацианоферрата(2) Калия K4[Fe(CN)6] До Гексацианоферрата(3) Калия K3[Fe(CN)6]

Все реакции разложения в неорганике | Химия ЕГЭ 2022 | УмскулСкачать

Все реакции разложения в неорганике | Химия ЕГЭ 2022 | Умскул
Поделиться или сохранить к себе: