Получение этанола гидратацией этилена уравнение

Содержание
  1. Этанол: химические свойства и получение
  2. Строение этанола
  3. Водородные связи и физические свойства спиртов
  4. Изомерия спиртов
  5. Структурная изомерия
  6. Химические свойства этанола
  7. 1.1. Взаимодействие с раствором щелочей
  8. 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
  9. 2. Реакции замещения группы ОН
  10. 2.1. Взаимодействие с галогеноводородами
  11. 2.2. Взаимодействие с аммиаком
  12. 2.3. Этерификация (образование сложных эфиров)
  13. 2.4. Взаимодействие с кислотами-гидроксидами
  14. 3. Реакции замещения группы ОН
  15. 3.1. Внутримолекулярная дегидратация
  16. 3.2. Межмолекулярная дегидратация
  17. 4. Окисление этанола
  18. 4.1. Окисление оксидом меди (II)
  19. 4.2. Окисление кислородом в присутствии катализатора
  20. 4.3. Жесткое окисление
  21. 4.4. Горение спиртов
  22. 5. Дегидрирование этанола
  23. Получение этанола
  24. 1. Щелочной гидролиз галогеналканов
  25. 2. Гидратация алкенов
  26. 3. Гидрирование карбонильных соединений
  27. 4. Получение этанола спиртовым брожением глюкозы
  28. Производство этанола методом гидратации этилена (стр. 2 )
  29. Этанол
  30. Содержание
  31. Получение
  32. Брожение
  33. Промышленное производство спирта из биологического сырья
  34. Гидролизное производство
  35. Гидратация этилена
  36. Очистка этанола
  37. Абсолютный спирт
  38. Свойства
  39. Физические свойства
  40. Химические свойства
  41. Пожароопасные свойства
  42. Применение
  43. Топливо
  44. Химическая промышленность
  45. Медицина
  46. Парфюмерия и косметика
  47. Пищевая промышленность
  48. Прочее
  49. Мировое производство этанола
  50. Применение этанола в качестве автомобильного топлива
  51. Автомобильный парк, работающий на этаноле
  52. Экономичность
  53. Экологические аспекты
  54. Безопасность и регулирование
  55. Действие этанола на организм человека
  56. Виды и марки этанола
  57. Этимология названий
  58. Этимология термина «этанол»
  59. Этимология названия «алкоголь»
  60. Этимология слова «спирт»

Видео:Опыты по химии. Получение этилена и опыты с нимСкачать

Опыты по химии. Получение этилена и опыты с ним

Этанол: химические свойства и получение

Этанол C2H5OH или CH3CH2OH, этиловый спирт – это органическое вещество, предельный одноатомный спирт .

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

Получение этанола гидратацией этилена уравнение

Видео:Получение и изучение свойств этилена. Опыт 2Скачать

Получение и изучение свойств этилена. Опыт 2

Строение этанола

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Получение этанола гидратацией этилена уравнение

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Получение этанола гидратацией этилена уравнение

Получение этанола гидратацией этилена уравнение

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Получение этанола гидратацией этилена уравнение

Поэтому этанол – жидкость с относительно высокой температурой кипения (температура кипения этанола +78 о С).

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Получение этанола гидратацией этилена уравнение

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Этанол смешивается с водой в любых соотношениях.

Видео:Получение этилена из этилового спиртаСкачать

Получение этилена из этилового спирта

Изомерия спиртов

Видео:10 класс. Химия. Промышленное получение этилового спирта. 13.05.2020.Скачать

10 класс. Химия. Промышленное получение этилового спирта. 13.05.2020.

Структурная изомерия

Для этанола характерна структурная изомерия – межклассовая изомерия.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3
Этиловый спиртДиметиловый эфир
СН3–CH2–OH CH3–O–CH3

Видео:Моделирование установки получения этанола гидратацией этилена в AspenHysys V10Скачать

Моделирование установки получения этанола гидратацией этилена в AspenHysys V10

Химические свойства этанола

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Получение этанола гидратацией этилена уравнение

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этанол взаимодействует с калием с образованием этилата калия и водорода .

Получение этанола гидратацией этилена уравнение

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Получение этанола гидратацией этилена уравнение

Видео:Качественная реакция на этанолСкачать

Качественная реакция на этанол

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Получение этанола гидратацией этилена уравнение

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Получение этанола гидратацией этилена уравнение

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Получение этанола гидратацией этилена уравнение

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Получение этанола гидратацией этилена уравнение

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат :

Видео:65. Что такое реакция гидратации и реакция дегидратацииСкачать

65.  Что такое реакция гидратации и реакция дегидратации

Получение этанола гидратацией этилена уравнение

Видео:Как получить этиловый спирт?Скачать

Как получить этиловый спирт?

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Видео:Несколько лайфхаков со спиртом. Химия – просто.Скачать

Несколько лайфхаков со спиртом. Химия – просто.

Получение этанола гидратацией этилена уравнение

В качестве катализатора этой реакции также используют оксид алюминия.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир:

Получение этанола гидратацией этилена уравнение

Видео:ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок ХимииСкачать

ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок Химии

4. Окисление этанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

Например, этанол окисляется оксидом меди до уксусного альдегида

Получение этанола гидратацией этилена уравнение

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Получение этанола гидратацией этилена уравнение

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания этанола:

Видео:Химия, 11-й класс, Этанол. Получение, применение и биологическая рольСкачать

Химия, 11-й класс, Этанол. Получение, применение и биологическая роль

5. Дегидрирование этанола

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этанола образуется этаналь

Получение этанола гидратацией этилена уравнение

Видео:Реакция этилена с раствором перманганата калияСкачать

Реакция этилена с раствором перманганата калия

Получение этанола

Видео:Дегидратация этанолаСкачать

Дегидратация этанола

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Получение этанола гидратацией этилена уравнение

Видео:Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакций

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании этаналя образуется этанол

Видео:7.3. Спирты: Способы получения. ЕГЭ по химииСкачать

7.3. Спирты: Способы получения. ЕГЭ по химии

Получение этанола гидратацией этилена уравнение

Видео:Химия с нуля — Химические свойства АлкеновСкачать

Химия с нуля — Химические свойства Алкенов

4. Получение этанола спиртовым брожением глюкозы

Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.

Видео:Практическая работа "Получение этилена и опыты с ним" 10 классСкачать

Практическая работа "Получение этилена и опыты с ним" 10 класс

Производство этанола методом гидратации этилена (стр. 2 )

Получение этанола гидратацией этилена уравнениеИз за большого объема этот материал размещен на нескольких страницах:
1 2 3

Получение этанола гидратацией этилена уравнение

Пропилен является побочным продуктом процесса пиролиза на этилен. В связи с этим разработан так называемы процесс «триолефин»,основанная на реакции диспропорционирования пропилена:

2 С3Н6 ↔ С2Н4 + СН3СН=СНСН3

Реакция идёт на окисных катализаторах (Со – Мо или W); в качестве носителя используется окись алюминия.

Побочными реакциями являются изомеризация, крекинг и уплотнение:

СН3СН=СНСН3 + СН2=СНСН2СН3 → Продукты уплотнения

При 500 К равновесная глубина превращения пропилена составляет 45,5 мол.%.

Основной причиной понижения выхода в реакции диспропорционирования являются нежелательные реакции изомеризации. Реакции крекинга и уплотнения удаётся подавить подбором условий реакции.

(«8») Исходный пропилен должен быть очищен от воды, сероводорода, кислорода, кислородсодержащих соединений, метилацетилена и пропадиена. Процесс ведут при 66 – 260 °C, давлении 14 – 41 кгс/см2 и высокой скорости подачи сырья. Реактор периодически останавливают для выжигания кокса, отлагающегося на поверхности катализатора. Количество образующегося кокса составляет всего 0,02 масс.% в расчёте на сырьё, но вследствие большой скорости подачи сырья оно достигает 20% от массы катализатора. Цикл работы между регенерациями колеблется от 20 часов до нескольких суток.

Диспропорционирование идёт с большой избирательностью: сумма этилена и бутенов достигает 95 – 97 % от превращённого пропилена, а конверсия пропилена 40 – 45 %. Непрореагировавший пропилен возвращается в реактор. Мольное отношение этилена к бутенам близко к стехиометрическому (около 1:1).

Бутен используется для дегидрирования с получением бутадиена-1,3.

Принципиальная схема процесса «триолефин» изображена на (рис.19):

Получение этанола гидратацией этилена уравнение

Пропан-пропиленовая фракция С3 в смеси с рециркулирующим пропиленом поступает в реактор 1 на диспропорционирование. Продукты реакции поступают в нижнюю часть этиленовой колонны 3 из которой сверху отбирается этилен и в виде бокового погона – смесь пропана с пропиленом. Эта смесь направляется в пропиленовую колонну 2, где непревращённый пропилен отгоняется от пропана и возвращается в рецикл. Остаток колонны 3 поступает в бутеновую колонну 4 для отделения высококипящих углеводородов. Из верхней части колонны 4 отбираются бутены высокой чистоты.

Процесс «триолефин» позволяет увеличить выход этилена при пиролизе бензина с 26 – 30 до 40,9 % и бутадиена – с 4,7 до 5,7 % при одновременном снижении выхода пропилена с 17,5 до 1,5% и бутенов с 3,5 до 0,4%. [3]


3. ОСНОВНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ СПИРТОВ

Спирты применяют в производстве синтетических полимеров, каучуков, пластификаторов, моющих средств, в качестве растворителей и экстрагентов и для других целей. Они являются массовой продукцией нефтехимического синтеза, поэтому большое значение для экономики производства спиртов имеют методы их получения и исходное сырьё. Одним из важнейших методов производства спиртов является гидратация олефинов. Этим методом получают этиловый, изопропиловый, втор — и трет-бутиловые спирты. Метиловый спирт получают на основе окиси углерода и водорода.

Наиболее крупнотоннажным продуктом является этиловый спирт. На основе этилового спирта в конце тридцатых годов был разработан метод получения бутадиена-1,3 и синтетического каучука на его основе. Этиловый спирт получают из пищевого сырья (ферментативный метод), из продуктов гидролиза древесины, из сульфитных щелоков и этилена.

Трудовые и сырьевые затраты при производстве этилового спирта из пищевых продуктов и древесных опилок очень велики, поэтому значительно выгоднее исходить из дешёвого углеводородного сырья и получать спирт гидратацией этилена. Для производства одной тонны этилового спирта на основе этилена необходимо переработать всего примерно 2,5 тонны газа или нефтяных дистиллятов, а для получения 1 тонны спирта из растительных материалов требуется 4 тонны зерна, 10 – 12 тонн картофеля или 8 тонн древесных опилок. Трудовые затраты в человеко-часах при производстве этанола из разных источников составляют: из картофеля 280, из зерна 160, из этилена 10.

Для получения синтетического этанола сырьём служит этилен, который подвергают сернокислотной гидратации или гидратации на твёрдых фосфорно-кислотных катализаторах (прямая гидратация):

С2Н4 + Н2SO4 → C2H5OSO3H + H2O → C2H5OH + Н2SO4;

С2Н4 + H2O (H3PO4) → C2H5OH.

Себестоимость синтетического этилового спирта значительно ниже, чем при других методах его получения. Относительная себестоимость (в %) этанола, получаемого разными способами, составляет: из этилена 100%, гидролизом древесины 174 – 290, из пищевого сырья 300 – 400. [2]


4. ПРОИЗВОДСТВО СПИРТОВ СЕРНОКИСЛОТНОЙ ГИДРАТАЦИЕЙ ОЛЕФИНОВ

4.1. Теоретические сведения

Реакция присоединения воды была открыта Фарадеем 1825 – 1828 гг. он нашёл, что при действии серной кислоты на этилен, содержащийся в светильном газе, наряду с диэтиловым эфиром и другими продуктами образуется этиловый спирт. Впоследствии было установлено, что первым продуктом присоединения серной кислоты к этилену является этилсерная кислота, которая при гидролизе превращается в этанол. В 1873 году и В. Горяинов детально изучили сернокислотную гидратацию этилена и предсказали техническое значение этого процесса. В начале тридцатых годов в Советском Далиным с сотр. были проведены исследования сернокислотной гидратации олефинов и в 1936 году в Баку была создана первая промышленная установка по получению этилового спирта из нефтяных газов.

Сернокислотная гидратация олефинов является обратимым процессом. Она протекает в две стадии:

CH2=CH2 + Н2SO4 ↔ CH2OSO2OHCH3 + H2O ↔ CH2OHCH3+ Н2SO4

(«9») Первая стадия – взаимодействие олефинов с серной кислотой – протекает через образование карбоний-иона, то есть как электрофильное замещение по правилу Марковникова. Поэтому сернокислотная гидратация олефинов выше С2 позволяет получать только вторичные и третичные спирты.

Серная кислота в этом процессе играет роль и катализатора и реагента. Сначала происходит отщепление протона от молекулы кислоты:

Н2SO4 ↔ Н+ + — OSO2OH

Под действием его из молекулы олефина образуется карбоний ион

CH2=CH2 + Н+ → CH2+CH3

который далее реагирует с серной кислотой с отщеплением от неё протона и образованием алкилсульфатов:

CH2+CH3 +Н2SO4 ↔ CH2OSO2OHCH3 + Н+

Если в системе присутствует вода, могут также образовываться ионы алкоксония, которые разлагаются с образов()анием спирта:

CH2+CH3 + H2O ↔ CH2(H2O) +CH3 → C2H5OH + Н+

Наряду с этим протекает ряд побочных реакций:

а)образование диалкил сульфатов:

CH2OSO2OHCH3 + CH2=CH2 → (CH3CH2)2SO4 + Н2SO4

б) образование простых эфиров из двух молекул спирта с отщеплением воды:

2C2H5OH +Н2SO4 Получение этанола гидратацией этилена уравнение(С2Н5)2О + H2O

Причём предполагается, что фактически сначала спирт реагирует с карбоний-ионом, а потом от продукта присоединения отщепляется протон:

C2H5OH + CH2 +CH3 Получение этанола гидратацией этилена уравнение(С2Н5)2О + H2

в) образование карбонильных соединений (альдегидов) при дегидрировании спирта:

C2H5OHПолучение этанола гидратацией этилена уравнениеC2H4O + H2

г) полимеризация олефинов:

nCH2=CH2 Получение этанола гидратацией этилена уравнение(CH2–CH2)n

(«10») Из-за этих побочных реакций при гидратации олефинов наряду со спиртами получаются небольшие количества эфиров, альдегидов и полимеров. Кроме того, образование нерасщепляющихся сульфопроизводных приводит к повышенному расходу серной кислоты.

Наиболее низкой реакционной способностью при взаимодействии с серной кислотой обладает этилен. Относительная скорость поглощения разных олефинов 80% серной кислотой меняется следующим образом: этилен (1), пропилен (500), бутилен-, изобутилен

Видно, что с увеличением молекулярного веса олефинов их реакционная способность возрастает. Олефины изостроения также обладают очень высокой реакционной способностью. Поскольку олефины в зависимости от молекулярного веса и строения реагируют с серной кислотой с разной скоростью, для каждого из них подбирают свои условия: концентрация кислоты, температуру, давление.

Получение этанола гидратацией этилена уравнение

Абсорбцию олефинов серной кислотой осуществляют в реакторах колонного типа с колпачковыми тарелками, на которых расположены змеевики водяного охлаждения, поскольку реакция идёт с выделением тепла. Тепло выделяется не только за счёт собственной реакции, но также за счёт разбавления кислоты водой.

Вторая стадия – гидролиз алкилсульфатов водой, осуществляемый при нагревании острым паром; одновременно происходит отгонка спирта и разбавление серной кислоты до концентрации почти вдвое меньшей, чем исходная. Существенной особенностью процесса является расщепление при гидролизе на спирте кислоту, не только моноалкил-, но и диалкилсульфатов:

CH2OSO2OHCH3 + H2O ↔ C2H5OH + Н2SO4

(CH3CH2)2SO4 + 2H2O ↔ 2C2H5OH + Н2SO4

При избытке олефина количество диалкилсульфата возрастает, а расход кислоты снижается, что очень важно для экономики процесса. Обычно один моль серной кислоты поглощает до 1,2 – 1,3 моль олефина. Другой особенностью является возможность поглощения олефинов из соответствующих фракций (этан – этиленовые, пропан – пропиленовые и др.) без их концентрирования.

Селективность превращения олефина в спирт при сернокислотной гидратации составляет 85 – 95%, а общая степень конверсии олефина превышает 97%.

При гидратации олефинов наряду с основной реакцией протекают олигомеризация олефина (получение низкомолекулярных полимеров) и образование простого эфира. Все они идут через промежуточную стадию карбокатиона, что можно изобразить схемой:

Н2О + R+; — H+(k1) ↔ ROH + R+; — H+(k2) ↔ ROR, R+ + олефинПолучение этанола гидратацией этилена уравнениеолигомеры.

Для состояния системы, далёкого от равновесия, из этой схемы вытекает следующее уравнение дифференциальной избирательности:

Получение этанола гидратацией этилена уравнение

Из него ясно видно что избирательность растёт при наличии избытка воды по отношении к олефину и образующемуся спирту. Спирт более реакционноспособен, чем вода [ (k2/k1)>1], поэтому реакцию надо вести так чтобы сохранялся большой избыток воды по отношению к спирту (

15:1). Выход олигомеров зависит от способности олефинов к полимеризации (изобутен > пропилен > этилен). Образование олигомеров можно снизить, не только изменяя соотношение воды и олефина, но и уменьшая температуру, так как олигомеризация имеет более высокую энергию активации по сравнению с гидратацией. Следует отметить, что при приближении к равновесию скорость гидратации и избирательность падают, что делает невыгодным проведение реакции до степеней конверсии, близким к равновесным. При этом для каждого олефина и катализатора имеется некоторый оптимум соотношения реагентов, степени конверсии и температуры, зависящий от производительности и избирательности процесса.

Для дегидратации спиртов установлена схема превращения, по которой эфир способен к разложению на олефин и спирт:

этанол + H+; – Н2О ↔ R+ + H+ → олефин;

этанол + H+; – Н2О ↔ R+ + этанол ↔ ROR + H+ → ROH + олефин + H+.Получение этанола гидратацией этилена уравнение

Внутримолекулярная дегидратация имеет более высокую энергию активации по сравнению с образованием простого эфира. По этой причине, а также из рассмотрения приведённой выше схемы следует, что дегидратацию с образованием ненасыщенной связи надо осуществлять при повышенной температуре и низком парциальном давлении или концентрации спирта. Дегидратацию с образованием простого эфира проводят при более низкой температуре, более высоких концентрации и парциальном давлении спирта (например, под некоторым давлением) и при неполной конверсии спирта в реакторе.

(«11») В результате рассматриваемых реакций нередко образуется ещё один побочный продукт – альдегид или кетон, получающийся за счёт дегидрирования спирта: С2Н5ОН → СН3СНО. Протонные кислоты не катализируют эту реакцию, но она становится возможной при использовании некоторых носителей или оксидных катализаторов. Из последних наиболее избирательны к дегидратации (по сравнению с дегидрированием) ThO2 и Al2O3, в то время как многие оксиды обладают смешанным, а другие – преимущественно дегидрирующим действием.

Рассмотрим равновесие основной реакции: гидратации – внутримолекулярной гидратации. Она протекает с выделением тепла, следовательно её равновесие смещается вправо при понижении температуры. Дегидратации, наоборот, способствует нагревание. Изменение энергии Гиббса при гидратации этилена, пропилена и изобутилена в зависимости от температуры представлено графически на (рис. 1.) Видно, что равновесие невыгодно для гидратации олефинов, так как при 150-300*С, когда катализаторы процесса достаточно активны, энергия Гиббса имеет большую положительную величину и равновесие смещается в сторону дегидратации. При этом для олефинов разного строения различия в термодинамике рассматриваемых реакций незначительны.

Получение этанола гидратацией этилена уравнение

Как показывает стехиометрия реакций, на их равновесие можно влиять, изменяя давление. Внутримолекулярной дегидратации, идущей с увеличением числа молей веществ, способствует пониженное или обычное давление. Наоборот, гидратации олефинов благоприятствует высокое давление, увеличивающее равновесную степень конверсии олефина. Так последняя при 250 – 300 *С и атмосферном давлении составляет всего 0,1 – 0,2%, что совершенно неприемлемо для практических целей, но при 7 – 8 МПа и тех же температурах она возрастает до 12 – 20%. Зависимость равновесной степени конверсии этилена при его гидратации от давления и температуры изображена на рис.60, причём аналогичные кривые характерны и для других олефинов. Очевидно, что гидратации способствуют одновременное снижение температуры и повышение давления. Рассмотрим теперь равновесие в системе межмолекулярная дегидратация спиртов – гидролиз простых эфиров. Термодинамическим методом регулирования направления этих реакций является изменение давления: на образование простого эфира оно не влияет, но получению олефина его снижение благоприятствует.

Механизм и кинетика реакций

Все рассматриваемые реакции принадлежат к числу кислотно-каталитических процессов. Типичными катализаторами гидратации являются достаточно сильные протонные кислоты: фосфорная кислота на носителе, поливольфрамовая кислота, сульфокатиониты. Для дегидратации используют фосфорную кислоту на носителе, оксид алюминия, серную кислоту, фосфаты (например СаНРО4) и другие. Роль катализаторов при гидратации состоит в протонировании олефина через промежуточное образование π- и σ-комплексов, причём обратная реакция дегидратации идёт через те же стадии, но в противоположном направлении:

СН2=СН2 + Н+ = СН3=СН2+ + Н2О = СН3=СН2ОН + Н+

При межмолекулярной дегидратации карбокатион не отщепляет протон, а взаимодействует с другой молекулой спирта:

СН3=СН2+ + СН3=СН2ОН = [СН3=СН+2] 2 О+Н = [СН3=СН+2] 2 О + +Н

Электрофильный механизм дегидратации олефинов определяет уже отмеченные выше направления присоединения по правилу Марковникова, а также изменение реакционной способности олефинов, чем больше замещённость тем выше реакционная способность. В соответствии с этим этен самый нереакционноспособный. Для разных условий и катализаторов отношение реакционной способности олефинов меняется, составляя, например, для 80% серной кислоты 16 000: 1 000: 500: 1 и увеличиваясь для менее сильных кислот. Это очень существенно для выбора условий гидратации, особенно температуры: последняя может быть более низкой (и более благоприятной для равновесия) для изобутена по сравнению с пропиленом и особенно с этиленом.

Равновесие гидратации – дегидратации мало зависит от строения олефина и спирта, поэтому ряд реакционной способности олефинов к гидратации должен соответствовать аналогичному ряду спиртов по их способности к дегидратации:

Третичный > вторичный > первичный.

Эта способность особенно растёт у β-кето — и β-нитроспиртов, электроноакцепторные группы которых повышают кислотность атомов водорода, находящихся при соседнем с НО-группой углеродном атоме. Это нередко делает возможным некаталитическую, дегидратацию или даже катализ реакции основаниями:

–СОСН2–СНОН– + НО-; — Н2О = –СОСН-–СНОН– = –СОСН=СН– НО-

При гетерогенно-каталитической внутримолекулярной и межмолекулярной дегидратации в газовой фазе кинетика процесса описывается соответственно следующими уравнениями:

Получение этанола гидратацией этилена уравнение, Получение этанола гидратацией этилена уравнение.

Они учитывают практическую необратимость внутримолекулярной дегидратации и тормозящие влияние спирта и воды, лучше адсорбирующихся на активных центрах катализатора.

При гидратации олефинов вода всегда находится в избытке, поэтому тормозящим влиянием спирта можно пренебречь:

Получение этанола гидратацией этилена уравнение

(«12») В ряде случаев роль воды более сложная. Так, фосфорная кислота, нанесённая на пористый носитель, образует на его поверхности жидкую плёнку, которая адсорбирует воду из газовой фазы. При каждых данных температуре и парциальном давлении водяных паров в газовой фазе устанавливается фазовое равновесие, и фосфорная кислота в плёнке имеет определённую концентрацию и соответствующую ей каталитическую активность. Последняя падает при снижении температуры и росте парциального давления воды, что ограничивает выбор этих параметров для каждого случая определёнными рамками.

При катализе реакций гидратации – дегидратации при помощи сульфокатионитов было найдено такое кинетическое уравнение:

Получение этанола гидратацией этилена уравнение

Первый его член соответствует катализу сульфогруппами катионита, а второй – специфическому катализу ионами гидроксония Н3О+. если количество воды в смеси мало, в уравнении преобладает первое слагаемое, сильно зависящее от концентрации воды; повышение этой величины ведёт к преобладанию второго слагаемого.

4.2. Технология получения спиртов методом сернокислотной гидратации

Схема установки получения этилового спирта сернокислотной гидратацией этилена приведена на (рис.2)

Получение этанола гидратацией этилена уравнение

Исходным сырьём служит газообразная этан этиленовая фракция, содержащая 30 – 50 % этилена, и 95 – 97% серная кислота. Этиленсодержащий газ подают в реактор – абсорбционную колонну 3, орошаемую серной кислотой и имеющую 25 тарелок. Газ в виде мелких пузырьков барботирует на тарелках через слой жидкости, где происходит поглощение этилена. Для отвода тепла реакции на каждой тарелке имеется змеевик водяного охлаждения. В колонне поддерживается температура 65 – 75 °C и давление 25 кгс/см2 . Газ, покидающий колонну содержит 2 – 6 % этилена. Он проходит скрубберы 8 и 9 орошаемые соответственно водой и 5 – 10% раствором едкого натра, для отмывки серной кислоты и нейтрализации. Отмытый газ (этан) направляют на пиролиз.

Из нижней части колонны 3 непрерывно вытекает реакционная масса, имеющая примерно следующий состав (%): этилсульфат – 60-80, серная кислота – 10-30, диэтилсульфат – 2-8, полимеры – 1-7, вода и прочие примеси -2. Эта смесь охлаждается в холодильнике 4 и направляется в гидролизёр 5, куда поступает и вода. Гидролиз проводится при°C и давлении 4,5 — 5 кгс/см2. из нижней части гидролизёра 5 реакционная масса поступает в верхнюю часть отпарной колонны 7, в низ которой подаётся острый пар. В нижней части колонны поддерживается температура 125 °C, в верхней 110°C и давление 0,5 кгс/см2. Из нижней части колонны 7 отводится 45 – 47 % серная кислота, поступающая на упаривание до 90 % концентрации. Пары спирта и других продуктов направляются в колонну 13, где отгоняется спирт – сырец. В эту колонну для нейтрализации серной кислоты вводят 5% раствор едкого натра.

Спирт – сырец содержит 25 – 35% этанола, 3 – 5% диэтилового эфира, 60 – 65% воды и 0,05% полимеров. Его направляют на ректификацию для получения% концентрации спирта. Выход этанола ректификата составляет 85% от стехиометрического. Кроме того, получается диэтиловый эфир с выходом до 7%.

Сернокислотная гидратация олефинов – самый распространённый метод получения спиртов. Однако недостатком метода является участие больших количеств серной кислоты и её разбавление, а отсюда необходимость её упаривания, перекачки больших объёмов и так далее. Всё это связано с коррозией аппаратуры и большими капитальными затратами на сооружение заводов. [2,5]


5. ПРОИЗВОДСТВО СПИРТОВ ПРЯМОЙ ГИДРАТАЦИЕЙ ОЛЕФИНОВ

5.1. Теоретические сведения

В промышленности методом прямой гидратации получают этиловый и изопропиловый спирты. Прямая гидратация олефинов заключается в непосредственном присоединении воды к олефином:

С2Н4 + H2O ↔ C2H5OH

Синтез этилового спирта удалось осуществить лишь после того, как были изысканы достаточно активные катализаторы процесса. При газофазной гидратации в качестве катализаторов применяются фосфорная кислота или окись вольфрама на носителях. На последнем катализаторе процесс проводят и в жидкой фазе.

Газофазная реакция прямой гидратации олефинов обратима и идёт с выделением тепла. Тепловой эффект зависит от строения исходных олефинов и их молекулярного веса:

С2Н4 + H2O ↔ C2H5OH + 10,9 ккал/моль (45,6 кДж/моль);

Поскольку реакция идёт с выделением тепла и уменьшением объёма, ей благоприятствуют пониженные температуры и повышенные давления. Константа равновесия реакции равна: lgKр = (2100/T) – 6,195, где Т – температура, К. Практический выбор условий связан со скоростью реакции и, следовательно, с активностью катализатора. Реакцию удаётся реализовать при температурах от 200 до 300 °C, но эти условия термодинамически неблагоприятны для этилена. Поэтому на промышленных катализаторах степень конверсии олефинов в спирт низка.

Также, как и в случае сернокислотной гидратации, присоединение воды происходит по правилу Марковникова.

(«13») Механизм прямой гидратации олефинов в присутствии фосфорной кислоты был предложен . Первая стадия заключается в физическом растворении этилена в плёнке фосфорной кислоты на поверхности носителя. Затем происходит отщепление протона от молекулы кислоты:

H3PO4 ↔ Н+ + H2PO4-

Известно, что олефины, как и ароматические углеводороды являются слабыми основаниями, поэтому прямую гидратацию олефинов можно рассматривать как реакцию электрофильного замещения. Этилен образует с протоном π-комплекс, который переходит в более стабильный ион карбония. Далее ион карбония взаимодействует с водой за счёт неподелённой электронной пары атома кислорода; в данном случае проявляется нуклеофильность воды, обладающей амфотерными свойствами. В результате образуется ион алкоксония, который отщепляет протон с образованием спирта:

С2Н4 + Н+↔π-комплекс↔CH2+CH3 + H2O↔CH2(H2O) +CH3 + Н+↔C2H5OH

В производстве этилового спирта прямой гидратацией этилена наиболее широкое применение получил фосфорнокислотный катализатор на твёрдом носителе.

Катализаторы прямой гидратации не должны разрушаться под действием влаги, поэтому такой катализатор, как фосфорная кислота на кизельгуре, не применим – он не имеет скелета и легко разрушается. В качестве носителя для фосфорной кислоты применяют силикагель и алюмосиликат. Обычный шариковый алюмосиликат обрабатывают 20% — ной серной кислотой; при этом содержание оксида алюминия в нём снижается, а содержание оксида кремния повышается (излишнее количество оксида алюминия приводит к образованию малоактивных фосфатов алюминия). Затем носитель пропитывают 65%-ной фосфорной кислотой и сушат при 100°C. Готовый катализатор содержит 35-40% фосфорной кислоты. Если (как это и принято чаще всего) в качестве носителя используют шариковый силикагель, его обрабатывают водяным паром с целью пассивации.

В условиях реакции фосфорная кислота, осаждённая на носителе, растворена в плёнке воды, адсорбированной на поверхности пор, и реакция фактически протекает в жидкой плёнке фосфорной кислоты. Кислотный катализ, таким образом, сводится к гомогенному катализу в жидкой плёнке катализатора.

Как и в случае сернокислотной гидратации, при прямой гидратации этилена протекает ряд других реакций приводящих к побочным продуктам. За счёт взаимодействия иона карбония со спиртом образуется диэтиловый эфир:

C2H5OH + CH2 +CH3 Получение этанола гидратацией этилена уравнение(С2Н5)2О + H2

За счёт дегидрирования спирта образуется ацетальдегид

C2H5OH Получение этанола гидратацией этилена уравнениеC2H4O+ H2

Причём реакция сопровождается образованием этана. Путём полимеризации этилена образуются полимеры:

CH2+CH3 + CH2CH2 Получение этанола гидратацией этилена уравнениеCH2+CH3CH2CH2 и т. д.

По топытным данным конвертированный этилен расходуется на образование различных продуктов таким образом (в масс.%): на этанол – 94,5; на диэтиловый эфир – 2,5; на ацетальдегид – 2,0; на полимеры и сложные эфиры – 1,0.

Реакция прямой гидратации этилена описывается следующим интегральным уравнением при Т, рH2O, рC2H4 – const:

Получение этанола гидратацией этилена уравнение

Реакцию прямой гидратации олефинов желательно проводить при невысоких температурах. Однако практически выбор температуры лимитируется скоростью реакции и активностью применяемых катализаторов.

Видео:Этиленовые углеводороды / Получение / Химические свойства / Применение алкенов (Базовый уровень)Скачать

Этиленовые углеводороды / Получение / Химические свойства /  Применение алкенов (Базовый уровень)

Этанол

Получение этанола гидратацией этилена уравнение

Этанол
Получение этанола гидратацией этилена уравнение
Получение этанола гидратацией этилена уравнение
Получение этанола гидратацией этилена уравнение
Систематическое
наименование
Этанол
Традиционные названияЭтиловый спирт
Хим. формулаC2H5OH
Рац. формулаСH3СH2OH
Состояниежидкость
Молярная масса46,069 г/моль
Плотность0,7893 г/см³
Поверхностное натяжение22,39×10−3 Н/м при 20 °C Н/м
Энергия ионизации10,47 ± 0,01 эВ
Т. плав.-114,3 °C
Т. кип.+78,4 °C
Т. всп.13 °C
Т. свспл.+363 °C
Пр. взрв.3,28 — 18,95 %
Тройная точка-114,3 °C, ? Па
Кр. точка+241 °C, 63 бар
Мол. теплоёмк.112,4 Дж/(моль·К)
Энтальпия образования−234,8 кДж/моль
Давление пара44 ± 1 мм рт.ст. и 58 гПа
pKa15,9
Растворимость в воденеограничена
Показатель преломления1,3611
Дипольный момент(газ) 1,69 Д
ГОСТГОСТ 17299-78 ГОСТ Р 55878-2013 ГОСТ 18300-87 ГОСТ 5962-2013 ГОСТ Р 51999-2002 ГОСТ Р 52574-2006
Рег. номер CAS64-17-5
PubChem702
Рег. номер EINECS200-578-6
SMILES
Кодекс АлиментариусE1510
RTECSKQ6300000
ChEBI16236
Номер ООН1170
ChemSpider682
ЛД5010 300 мг/кг
Токсичность

Получение этанола гидратацией этилена уравнение

Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Этанол (этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») — одноатомный спирт с формулой C2H5OH (эмпирическая формула C2H6O), рациональная формула: CH3-CH2-OH, аббревиатура EtOH, второй представитель гомологического ряда одноатомных спиртов, при стандартных условиях летучая, горючая, бесцветная прозрачная жидкость.

Действующий компонент алкогольных напитков является депрессантом — психоактивным веществом, угнетающим центральную нервную систему человека.

Этиловый спирт также используется как топливо, в качестве растворителя, как наполнитель в спиртовых термометрах и как дезинфицирующее средство (или как компонент его).

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Содержание

  • 1 Получение
    • 1.1 Брожение
      • 1.1.1 Промышленное производство спирта из биологического сырья
      • 1.1.2 Гидролизное производство
    • 1.2 Гидратация этилена
    • 1.3 Очистка этанола
    • 1.4 Абсолютный спирт
  • 2 Свойства
    • 2.1 Физические свойства
    • 2.2 Химические свойства
    • 2.3 Пожароопасные свойства
  • 3 Применение
    • 3.1 Топливо
    • 3.2 Химическая промышленность
    • 3.3 Медицина
    • 3.4 Парфюмерия и косметика
    • 3.5 Пищевая промышленность
    • 3.6 Прочее
  • 4 Мировое производство этанола
  • 5 Применение этанола в качестве автомобильного топлива
    • 5.1 Автомобильный парк, работающий на этаноле
    • 5.2 Экономичность
    • 5.3 Экологические аспекты
  • 6 Безопасность и регулирование
  • 7 Действие этанола на организм человека
  • 8 Виды и марки этанола
  • 9 Этимология названий
    • 9.1 Этимология термина «этанол»
    • 9.2 Этимология названия «алкоголь»
    • 9.3 Этимология слова «спирт»

Получение этанола гидратацией этилена уравнение

Получение

Существует 2 основных способа получения этанола — микробиологический (спиртовое брожение) и синтетический (гидратация этилена).

Брожение

Известный с давних времён способ получения этанола — спиртовое брожение органических продуктов, содержащих углеводы (виноград, плоды и т. п. ) под действием ферментов дрожжей и бактерий. Аналогично выглядит переработка крахмала картофеля, риса, кукурузы. Источником получения топливного спирта является вырабатываемый из тростника сахар-сырец и проч. Реакция эта довольно сложна, её результат можно выразить уравнением:

Раствор, получаемый в результате брожения, содержит не более 15 % этанола, так как в более концентрированных растворах дрожжи нежизнеспособны. Полученный таким образом этанол нуждается в очистке и концентрировании, обычно путём дистилляции.

Для получения этанола этим способом наиболее часто используют различные штаммы дрожжей вида Saccharomyces cerevisiae, в качестве питательной среды предварительно обработанные древесные опилки и/или раствор, полученный из них.

Промышленное производство спирта из биологического сырья

Современная промышленная технология получения этилового спирта из пищевого сырья включает следующие стадии:

  • Подготовка и измельчение крахмалистого сырья — зерна (прежде всего — ржи, пшеницы), картофеля, кукурузы, яблок и т. п.
  • Ферментация. На этой стадии происходит ферментативное расщепление крахмала до сбраживаемых сахаров. Для этих целей применяются рекомбинантные препараты альфа-амилазы, полученные биоинженерным путём — глюкамилаза, амилосубтилин.
  • Брожение. Благодаря сбраживанию дрожжами сахаров происходит накопление в браге спирта.
  • Брагоректификация. Осуществляется на разгонных колоннах.

Отходами бродильного производства являются углекислый газ, барда, эфиро-альдегидная фракция, сивушный спирт и сивушные масла.

Спирт, поступающий из брагоректификационной установки (БРУ), не является безводным, содержание этанола в нём до 95,6 %. В зависимости от содержания в нём посторонних примесей, его разделяют на следующие категории:

Производительность современного спиртового завода составляет около 30 000—100 000 литров спирта в сутки.

Гидролизное производство

В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (древесина, солома), которую предварительно гидролизуют. Образовавшуюся при этом смесь пентоз и гексоз подвергают спиртовому брожению. В странах Западной Европы и Америки эта технология не получила распространения, но в СССР (ныне в России) существовала развитая промышленность кормовых гидролизных дрожжей и гидролизного этанола.

Гидратация этилена

В промышленности, наряду с первым способом, используют гидратацию этилена. Гидратацию можно вести по двум схемам:

  • прямая гидратация при температуре 300 °C , давлении 7 МПа , в качестве катализатора применяют ортофосфорную кислоту, нанесённую на силикагель, активированный уголь или асбест:

CH2 = CH2 + H2O → C2H5OH

  • гидратация через стадию промежуточного эфира серной кислоты, с последующим его гидролизом (при температуре 80—90 °С и давлении 3,5 МПа ):

CH2 = CH2 + H2SO4 → CH3CH2OSO2OH CH3CH2OSO2OH + H2O → CH3CH2OH + H2SO4

Эта реакция осложняется параллельной реакцией образования диэтилового эфира.

Очистка этанола

Этанол, полученный путём гидратации этилена или брожением, представляет собой водно-спиртовую смесь, содержащую примеси. Для его промышленного, пищевого и фармакопейного применения необходима очистка. Фракционная перегонка позволяет получить этанол с концентрацией около 95,6 % (мас.) ; эта неразделимая перегонкой азеотропная смесь содержит 4,4 % воды (мас.) и имеет температуру кипения 78,15 °C .

Перегонка освобождает этанол как от легколетучих, так и от тяжёлых фракций органических веществ (кубовый остаток).

Абсолютный спирт

Абсолютный спирт — этиловый спирт, практически не содержащий воды. Он кипит при температуре 78,39 °C , в то время как спирт-ректификат, содержащий не менее 4,43 % воды, кипит при 78,15 °C . Получают перегонкой водного спирта, содержащего бензол, и другими способами, например, спирт обрабатывают веществами, реагирующими с водой или поглощающими воду, такими, как негашёная известь CaO или прокалённый медный купорос CuSO4.

Свойства

Физические свойства

В обычных условиях представляет собой бесцветную, легкоподвижную, летучую жидкость с характерным запахом и сладковато-жгучим вкусом.

Плотность этилового спирта 0,7905 г/см 3 при 20 °C , он легче воды.

Является хорошим растворителем многих органических веществ и некоторых неорганических солей.

Физические свойства абсолютированного этанола ( 100 % ) немного отличаются от свойств спирта-ректификата с концентрацией 95,57 % . Их свойства почти одинаковы, но численные величины различаются на 0,1—0,01 % .

Физические свойства этанола

Молекулярная масса46,069 а. е. м.
Температура плавления−114,15 °C
Температура кипения78,39 °C
Критическая точка241 °C (при давлении 6,3 МПа)
РастворимостьСмешивается в произвольных отношениях с бензолом, водой, глицерином, диэтиловым эфиром, ацетоном, метанолом, уксусной кислотой, хлороформом
Показатель преломленияПоказатель преломления (для D-линии натрия) 1,3611 (при 20 °C) (температурный коэффициент показателя преломления −4,0⋅10 −4 /°C, почти постоянный в интервале температур 10—30 °C )
Стандартная энтальпия образования ΔH−234,8 кДж/моль (г) (при 298 К)
Стандартная энтропия образования S281,38 Дж/моль·K (г) (при 298 К)
Стандартная мольная теплоёмкость Cp1,197 Дж/моль·K (г) (при 298 К)
Энтальпия плавления ΔHпл4,81 кДж/моль
Энтальпия кипения ΔHкип839,3 кДж/моль

Получение этанола гидратацией этилена уравнение

Смесь по массе 95,57 % этанола и 4,43 % воды является азеотропной, т. е. не разделяется при перегонке, кипит при нормальном давлении при температуре 78,174 °C, в то время как абсолютированный этанол имеет более высокую точку кипения 78,39 °C.

С водой этанол смешивается в произвольном отношении, при смешивании наблюдается значительное, до нескольких процентов уменьшение объёма смеси относительно исходного суммарного объёма чистых веществ, например, при смешивании 50 мл этанола с 50 мл воды образуется 97 мл раствора. Также смешивание сопровождается некоторым нагревом смеси.

Абсолютный этанол затвердевает при температуре −114,5 °C. Температура плавления смесей этанола с водой уменьшается при увеличении концентрации этанола в растворе и достигает минимума при массовой концентрации этанола в воде равной 93,5 % — эвтектики этанол-вода, имеющей температуру плавления −118 °C. При низких температурах, ниже −20 °С водный раствор этанола (96 %) практически не испаряется и превращается в вязкую жидкость. При −70 °C он становится ещё более вязким и по текучести напоминает густой мёд.

Химические свойства

Получение этанола гидратацией этилена уравнение

Типичный представитель одноатомных спиртов.

Горюч. Легко воспламеняется. При достаточном доступе воздуха горит (за счёт его кислорода) светлым голубоватым пламенем, образуя терминальные продукты окисления — диоксид углерода и воду:

Ещё энергичнее эта реакция протекает в атмосфере чистого кислорода.

При определённых условиях (температура, давление, катализаторы) возможно и контролируемое окисление (как элементным кислородом, так и многими другими окислителями) до ацетальдегида, уксусной кислоты, щавелевой кислоты и некоторых других продуктов, например:

Обладает слабо выраженными кислотными свойствами, в частности, подобно кислотам взаимодействует со щелочными металлами, а также магнием, алюминием и их гидридами, выделяя при этом водород и образуя солеподобные этилаты, являющиеся типичными представителями алкоголятов:

Обратимо реагирует с карбоновыми и некоторыми неорганическими кислородсодержащими кислотами с образованием сложных эфиров:

С галогеноводородами (HCl, HBr, HI) вступает в обратимые реакции нуклеофильного замещения:

Без катализаторов реакция с HCl идет относительно медленно; значительно быстрее — в присутствии хлорида цинка и некоторых других кислот Льюиса.

Вместо галогеноводородов для замещения гидроксильной группы на галоген могут быть использованы галогениды и галогеноксиды фосфора, тионилхлорид и некоторые другие реагенты, например:

Сам этанол также обладает нуклеофильными свойствами. В частности, он относительно легко присоединяется по активированным кратным связям, например:

реагирует с альдегидами с образованием полуацеталей и ацеталей:

При умеренном (не выше 120 °C) нагревании с концентрированной серной кислотой или другими водоотнимающими средствами кислотного характера образует диэтиловый эфир:

При более сильном нагревании с серной кислотой, а также при пропускании паров над нагретым до 350÷500 °C оксидом алюминия происходит более глубокая дегидратация. При этом образуется этилен:

При использовании катализаторов, содержащих наряду с оксидом алюминия высокодисперсное серебро и другие компоненты, процесс дегидратации может быть совмещён с контролируемым окислением этилена элементным кислородом, в результате чего с удовлетворительным выходом удается реализовать одностадийный процесс получения окиси этилена:

В присутствии катализатора, содержащего оксиды алюминия, кремния, цинка и магния, претерпевает серию сложных превращений с образованием в качестве основного продукта бутадиена (реакция Лебедева):

В 1932 году на основе этой реакции в СССР было организовано первое в мире крупнотоннажное производство синтетического каучука.

В слабощелочной среде образует иодоформ:

Эта реакция имеет некоторое значение для качественного и количественного определения этанола в отсутствии других веществ, дающих подобную реакцию.

Пожароопасные свойства

Легковоспламеняющаяся бесцветная жидкость; давление насыщенного пара, кПа: lg p = 7.81158-1918.508/(252.125+t) при температуре от −31 до 78°С; теплота сгорания — 1408 кДж/моль; теплота образования −239,4 кДж/моль; температура вспышки 13°С (в закрытом тигле), 16°С (в открытом тигле); температура воспламенения 18°С; температура самовоспламенения 400°С; концентрационные пределы распространения пламени 3,6—17,7 % объёма; температурные пределы распространения пламени: нижний 11°С, верхний 41°С; минимальная флегматизирующая концентрация, % объёма: CO2 — 29.5, H2O — 35.7, N2 — 46; максимальное давление взрыва 682 кПа; максимальная скорость нарастания давления 15,8 МПа/с; скорость выгорания 0,037 кг/(м 2 •с); максимальная нормальная скорость распространения пламени — 0,556 м/с; минимальная энергия зажигания — 0,246 МДж; минимальное взрывоопасное содержание кислорода 11,1 % объёма.

Применение

Топливо

Первым использовал этанол в качестве моторного топлива Генри Форд, который в 1880 г. создал первый автомобиль, работающий на этаноле. Возможность использования спиртов в качестве моторного топлива была показана также в 1902 г., когда на конкурсе в Париже были выставлены более 70 карбюраторных двигателей, работающих на этаноле и смесях этанола с бензином.

Этанол может использоваться как топливо, в т. ч. для ракетных двигателей (так, 75%-й водный этанол использовался в качестве топлива в первой в мире серийной баллистической ракете — немецкой «Фау-2» и ранних советских ракетах конструкции Королёва — от Р-1 до Р-5), двигателей внутреннего сгорания, бытовых, походных и лабораторных нагревательных приборов (т. н. «спиртовок»), грелок для туристов и военнослужащих (каталитическое автоокисление на платиновом катализаторе). Ограниченно (в силу своей гигроскопичности) используется в смеси с классическими нефтяными жидкими топливами. Применяется для выработки высококачественного топлива и компонента бензинов — Этил-трет-бутилового эфира, более независимого от ископаемой органики, чем МТБЭ.

Химическая промышленность

  • служит сырьём для получения многих химических веществ, таких, как ацетальдегид, диэтиловый эфир, тетраэтилсвинец, уксусная кислота, хлороформ, этилацетат, этилен и др.;
  • широко применяется как растворитель (в лакокрасочной промышленности, в производстве товаров бытовой химии и многих других областях);
  • является компонентом антифризов и стеклоомывателей;
  • в бытовой химии этанол применяется в чистящих и моющих средствах, в особенности для ухода за стеклом и сантехникой. Является растворителем для репеллентов.

Медицина

Получение этанола гидратацией этилена уравнение

  • по своему действию этиловый спирт можно отнести к антисептикам;
  • как обеззараживающее и подсушивающее средство, наружно;
  • подсушивающие и дубящие свойства 97%-го этилового спирта используются для обработки операционного поля или в некоторых методиках обработки рук хирурга;
  • растворитель для лекарственных средств, для приготовления настоек, экстрактов из растительного сырья и др.;
  • консервант настоек и экстрактов (минимальная концентрация 18 %);
  • пеногаситель при подаче кислорода, искусственной вентиляции лёгких;
  • в согревающих компрессах;
  • для физического охлаждения при лихорадке (для растирания);
  • компонент общей анестезии в ситуации дефицита медикаментозных средств;
  • как пеногаситель при отёке лёгких в виде ингаляции 33 % раствора;
  • этанол является противоядием при отравлении некоторыми токсичными спиртами, такими, как метанол и этиленгликоль. Его действие обусловлено тем, что фермент алкогольдегидрогеназа, при наличии нескольких субстратов (например, метанол и этанол) осуществляет лишь конкурентное окисление, благодаря чему после своевременного (почти немедленного, вслед за метанолом/этиленгликолем) приёма этанола уменьшается текущая концентрация токсичных метаболитов (для метанола — формальдегида и муравьиной кислоты, для этиленгликоля — щавелевой кислоты).

Парфюмерия и косметика

Является универсальным растворителем различных веществ и основным компонентом духов, одеколонов, аэрозолей и т. п. Входит в состав разнообразных средств, включая зубные пасты, шампуни, средства для душа, и т. д.

Пищевая промышленность

Наряду с водой, является основным компонентом спиртных напитков (водка, вино, джин, пиво и др.). Также в небольших количествах содержится в ряде напитков, получаемых брожением, но не причисляемых к алкогольным (кефир, квас, кумыс, безалкогольное пиво и др.). Содержание этанола в свежем кефире ничтожно (0,12 %), но в долго стоявшем, особенно в тёплом месте, может достичь 1 %. В кумысе содержится 1—3 % этанола (в крепком до 4,5 %), в квасе — от 0,5 до 1,2 %.

Растворитель для пищевых ароматизаторов. Может быть использован как консервант для хлебобулочных изделий, а также в кондитерской промышленности.

Зарегистрирован в качестве пищевой добавки E1510.

Энергетическая ценность этанола — 7,1 ккал/г.

Прочее

Применяется для фиксирования и консервирования биологических препаратов.

Получение этанола гидратацией этилена уравнение

Мировое производство этанола

Производство этанола по странам, млн литров.

Страна2004200520062007200820092010
США13 36216 11719 94624 56534 77640 06845 360
Бразилия15 07815 97816 97718 972,5824 464,9
Евросоюз2 155,732 773
Китай3 6433 7953 8451 837,081 897,18
Индия1 7461 6971 897199,58249,48
Франция827907948
Германия268430764
Россия760860608609536517700
ЮАР415389387
Великобритания400351279
Испания298298463
Таиланд279298352299,37339,4
Колумбия279283,12299,37
Весь мир:40 71045 92750 98949 524,4265 527,05

Применение этанола в качестве автомобильного топлива

Топливный этанол делится на биоэтанол и этанол, полученный другими методами (из отходов пластмасс, синтезированный из газа и т. п.).

Биоэтанол — это жидкое этанолсодержащее топливо, получаемое специальными заводами из крахмал-, целлюлозно- или сахаросодержащего сырья по системе укороченной дистилляции (позволяет получать качество, достаточное для использования в качестве топлива). Содержит метанол и сивушные масла, что делает его совершенно непригодным для питья. Применяется в чистом виде (точнее в виде азеотропа 96,6 %), а чаще в смеси с бензином (так называемый газохол) или дизельным топливом. Производство и использование биоэтанола увеличивается в большинстве стран мира, как более экологичная и возобновляемая альтернатива нефти.

Полноценно использовать биоэтанол способны лишь автомобили с соответствующим двигателем или с универсальным Flex-Fuel (способен потреблять смеси бензин/этанол с любым соотношением). Бензиновый двигатель способен потреблять бензин с добавкой этанола не более 30 %, возможно также переоборудование обычного бензинового двигателя, но это экономически нецелесообразно.

Проблемой является недостаточная смешиваемость бензина и дизельного топлива с этанолом, из-за чего последний нередко выслаивается (при низких температурах всегда). Особенно эта проблема актуальна для России. Решения этой проблемы на данный момент не найдено.

Преимуществом смесей этанола с другими видами топлива перед «чистым» этанолом является лучшая зажигаемость, благодаря низкому содержанию влаги, тогда как «чистый» этанол (марка E100, с практическим содержанием C2H5OH 96,6 %) является неразделяемым дистилляцией азеотропом. Разделение же иными способами невыгодно. При добавлении этанола к бензину или дизелю происходит выслаивание воды.

В разных странах действуют следующие государственные программы применения этанола и содержащих его смесей на транспорте с двигателями внутреннего сгорания:

СтранаТребования
Бразилия22—25 % этанола в бензине, 2 % в дизельном топливе, доступны высокоэтанольные марки (E85, E100), их процент на рынке плавно увеличивают. Основной источник — сахарный тростник. Около 45 % мирового производства.
СШАНа США приходится 44,7 % мирового производства топливного спирта. Внедряются марки смеси этанола и бензина (E85, E10). Предполагается ввести 20 % к 2020 году.
Венесуэла10 % этанола в бензине.
ЕвросоюзДо

6 % добавляется в обязательном порядке, внедряются этанольные марки E10 и выше.

КитайПроизводит ежегодно 3 млн тонн к 2010 году.
АргентинаОбязательна 5 % добавка этанола в любых марках бензина, внедряются марки с большим содержанием.
Таиланд5 % этанола является минимальным допустимым содержанием в бензине.
УкраинаЗаконодательно установлено содержание 5 % этанола в бензине с 2013, и 7 % с 2014 года. На заправках широко продается топливо с содержанием биоэтанола от 30 до 37,2 %
Колумбия10%-я смесь в больших городах к сентябрю 2005 года.
Канада5%-я смесь с сентября 2010 года
ЯпонияРазрешено 3%-е содержание этанола в бензине и менее.
Индия20 % биотоплив к 2017 году. Сейчас 5 %. Производится из самого различного сырья, в частности из древесной стружки.
АвстралияЭтанола в бензине не более 10 %, марка E10.
Индонезия10 % спирта в бензине.
ФилиппиныE10 постепенно внедряется.
ИрландияМарки E5-E10 достаточно широко применяются и продолжат внедряться.
ДанияАналогично Ирландии.
ЧилиРазрешено 2 % содержание этанола в автомобильном топливе.
Мексика3,2 % биотоплива в автомобильном топливе к 2012 году обязательно. В Америке самая неохотно внедряющая биотопливо страна.

В США «Энергетический билль», подписанный президентом Бушем в августе 2005 года, предусматривает производство к 2012 году ежегодно 30 миллиардов литров этанола из зерна и 3,8 миллиардов литров из целлюлозы (стебли кукурузы, рисовая солома, отходы лесной промышленности).

Внедрение производства биотоплива является затратным процессом, однако дает экономике преимущества впоследствии. Так, например, строительство завода по производству этанола мощностью 40 млн галлонов даёт экономике (на примере США):

  • 142 млн долл. инвестиций во время строительства;
  • 41 рабочее место на заводе, плюс 694 рабочих места во всей экономике;
  • Увеличивает местные цены на зерновые на 5—10 центов за бушель;
  • Увеличивает доходы местных домохозяйств на 19,6 млн долл. ежегодно;
  • Приносит в среднем 1,2 млн долларов налогов;
  • Доходность инвестиций 13,3 % годовых.

В 2006 г. этаноловая индустрия дала экономике США:

  • 160231 новых рабочих мест во всех секторах, включая 20000 рабочих мест в строительстве;
  • Увеличила доходы домохозяйств на $6,7 миллиарда;
  • Принесла $2,7 млрд федеральных налогов и $2,3 млрд местных налогов.

В 2006 году в США было переработано в этанол 2,15 миллиарда бушелей кукурузы, что составляет 20,5 % годового производства кукурузы. Этанол стал третьим по величине потребителем кукурузы после животноводства и экспорта. На этанол перерабатывается 15 % урожая сорго США.

Производство барды этаноловой промышленностью США, метрических тонн в сухом весе.

199920002001200220032004200520062020 прогноз
2,3 млн.2,7 млн.3,1 млн3,6 млн.5,8 млн.7,3 млн.9,0 млн.12 млн.20 млн.

Барда является вторичным кормовым сырьём, а также может быть использована для получения биогаза.

Автомобильный парк, работающий на этаноле

Смесь этанола с бензином обозначается буквой Е. Цифрой у буквы Е обозначается процентное содержание этанола. Е85 означает смесь из 85 % этанола и 15 % бензина.

Смеси до 20 % содержания этанола могут применяться на любом автомобиле. Однако некоторые производители автомобилей ограничивают гарантию при использовании смеси с содержанием более 10 % этанола. Смеси, содержащие более 20 % этанола, во многих случаях требуют внесения изменения в систему зажигания автомобиля.

Автопроизводители выпускают автомобили, способные работать и на бензине, и на Е85. Такие автомобили называются «Flex-Fuel». В Бразилии такие автомобили называют «гибридными». В русском языке названия нет. Большинство современных автомобилей либо изначально поддерживают использование такого топлива, либо опционально, по соответствующему запросу.

В 2005 году в США более 5 млн автомобилей имели гибридные двигатели. В конце 2006 г. в США эксплуатировалось 6 млн автомобилей с такими двигателями. Общий автопарк составляет 230 млн автомобилей.

1200 заправочных станций продают Е85 (май 2007). Всего в США автомобильное топливо продают около 170 000 заправочных станций.

В Бразилии около 29 000 заправочных станций продают этанол.

Экономичность

Себестоимость бразильского этанола (около 0,19 долларов США за литр в 2006 г.) делает его использование экономически выгодным.

Экологические аспекты

Биоэтанол как топливо часто называют «нейтральным» в качестве источника парниковых газов. Он обладает нулевым балансом диоксида углерода, поскольку при его производстве путём брожения и последующем сгорании выделяется столько же CO2, сколько до этого было взято из атмосферы использованными для его производства растениями. Однако ректификация этанола требует дополнительных затрат энергии, вырабатываемой одним из «традиционных» способов (в том числе и сжиганием ископаемого топлива).

В 2006 году применение этанола в США позволило сократить выбросы около 8 млн тонн парниковых газов (в CO2 эквиваленте), что примерно равно годовым выхлопам 1,21 млн автомобилей.

Безопасность и регулирование

Получение этанола гидратацией этилена уравнение

  • Этанол — горючее вещество, смесь его паров с воздухом взрывоопасна.
  • Спирт этиловый синтетический, технический и пищевой, непригодный для производства алкогольной продукции, входит в список ядовитых веществ для целей статьи 234 и других статей Уголовного кодекса Российской Федерации.
  • С 2005 года розничная продажа спирта в России запрещена (за исключением районов Крайнего Севера).

О налогообложении питьевого спирта см. Алкогольные напитки — Акциз

Действие этанола на организм человека

В биохимии этанола существенную роль играет тот факт, что он образует растворы в широком диапазоне пропорций как с водой, так и с жирами. Является побочным продуктом метаболизма глюкозы, в крови здорового человека может содержаться до 0,01% эндогенного этанола.

В зависимости от дозы, концентрации, пути попадания в организм и длительности воздействия этанол также может обладать наркотическим и токсическим действием. Под наркотическим действием обозначается его способность вызвать кому, ступор, нечувствительность к боли, угнетение функций ЦНС, алкогольное возбуждение, привыкание, а также его наркозное действие. Под действием этанола происходит выделение эндорфинов в прилежащем ядре (Nucleus accumbens), у страдающих алкоголизмом также в орбитофронтальной коре (поле 10). Тем не менее с юридической точки зрения этиловый спирт наркотиком не признан, так как это вещество не включено в международный список контролируемых веществ конвенции ООН 1988 года. В определённых дозах к массе тела и концентрациях приводит к острому отравлению и смерти (смертельная разовая доза — 4—12 граммов этанола на килограмм массы тела).

Основной метаболит этанола ацетальдегид является токсичным, мутагенным и канцерогенным веществом. Существуют доказательства канцерогенности ацетальдегида в экспериментах на животных; кроме того, ацетальдегид повреждает ДНК.

Длительное употребление этанола может вызвать такие заболевания, как цирроз печени, гастрит, некротизирующий панкреатит, язва желудка, рак груди, рак желудка и рак пищевода (то есть является канцерогеном), гемолитическая анемия, артериальная гипертензия, инсульт, стать причиной внезапной смерти людей, страдающих ишемической болезнью сердца; может вызвать серьёзные нарушения обмена веществ. Алкоголь может увеличить риск рождения ребёнка с врождёнными аномалиями нервной системы и обусловить задержку роста.

Употребление этанола может вызвать оксидативное повреждение нейронов головного мозга, а также их гибель вследствие повреждения гемато-энцефалического барьера.

Злоупотребление алкогольными напитками может привести к клинической депрессии и алкоголизму.

Приём алкогольных напитков на фоне приёма лекарств очень нежелателен, так как алкоголь извращает действие лекарственных средств и вследствие этого становится опасен для жизни человека. Отрицательное влияние алкогольных напитков на результаты фармакотерапии многообразно и зависит от различных факторов: индивидуальных свойств больного, его чувствительности, тяжести заболевания, но во всех случаях у пациентов, принимающих лекарства и потребляющих алкоголь, эффективность фармакотерапии ослабляется, а порой и сводится на нет.

Этанол может в небольших количествах синтезироваться в просвете желудочно-кишечного тракта в результате процессов ферментации углеводной пищи микроорганизмами (условный эндогенный алкоголь). Существование биохимических реакций с синтезом этанола в тканях организма человека (истинно эндогенный алкоголь) полагается возможным, но не доказано к настоящему моменту. Количество эндогенного алкоголя редко превышает 0,18 промилле, что находится на границе чувствительности самых современных приборов. Обычный алкотестер такие количества определить не может.

Виды и марки этанола

  • Ректификат (точнее, спирт-ректификат) — это очищенный путём ректификации этиловый спирт, содержит 95,57 %, химическая формула C2H5OH.
  • Спирт этиловый абсолютированный — содержание спирта >99,9 %.
  • Спирт медицинский — содержание спирта 96,4—97 %.

Этимология названий

Для обозначения данного вещества используется несколько наименований. Технически наиболее правильным является термин этанол или этиловый спирт. Однако значительное распространение получили названия алкоголь, винный спирт или просто спирт, хотя спирты, или алкоголи — это более широкий класс веществ.

Этимология термина «этанол»

Названия этанол и этиловый спирт указывают на то, что данное соединение содержит в своей основе этил — радикал этана. При этом слово спирт (суффикс -ол) в названии указывает на содержание гидроксильной группы (-OH), характерной для спиртов.

Этимология названия «алкоголь»

Название алкоголь происходит от араб. ‏الكحل ‎ аль-кухуль, означающего мелкий порошок, полученный возгонкой, порошкообразная сурьма, порошок для подкрашивания век. В средневековой латыни словом лат. alcohol обозначали порошки, дистиллированную воду.

В русский язык слово «алкоголь» пришло через его немецкий вариант нем. alkohol . Однако в русском языке сохранился в виде архаизма, по всей видимости, и омоним слова «алкоголь» в значении «мелкий порошок».

Этимология слова «спирт»

Наименование этанола винный спирт произошло от лат. spiritus vini (дух вина). В русский язык слово «спирт» пришло через английский его вариант англ. spirit .

В английском языке слово «спирт» в данном значении использовалось уже в середине XIII века, и только начиная с 1610 года слово «спирт» стало употребляться алхимиками для обозначения летучих веществ, что соответствует основному значению слова «spiritus» (испарения) в латинском языке. К 1670-м годам значение слова сузилось до «жидкостей с высоким процентным содержанием алкоголя», а летучие жидкости получили название эфиров.

См. также Этимология названия в статье «Спирты».

Поделиться или сохранить к себе: