Дифференциалом функции называется главная (линейная по ) часть приращения функции. Чтобы понять данное определение, рассмотрим следующий рисунок.
На рисунке изображён график функции и касательной к ней в точке . Дадим аргументу функции некоторое приращение , тогда функция также получит некоторое приращение . Величина называется дифференциалом функции . При этом, из графика следует, что равно приращению ординаты касательной, проведённой в точке к функции . Именно поэтому дифференциалом называют линейную часть приращения функции, т.е. приращение ординаты касательной.
Из рисунка следует, что угол наклона касательной , который она образует с положительным направлением оси и — равны. Кроме того, тангенс угла наклона касательной равен значению производной функции в точке касания:
Из треугольника следует, что:
Таким образом, дифференциал функции выражается следующей формулой:
Рассмотрим ещё такой момент: из рисунка следует, что , причем . Причем, чем меньше , тем меньший вклад в величину вносит значение . Т.е. при достаточно малых значениях , можно считать, что . Данное соотношение позволяет вычислять приближенное значение функции в точке , если известно её значение в точке .
Дифференциал высшего порядка (например порядка ) определяется как дифференциал от дифференциала -ого порядка:
Например, дифференциал второго порядка вычисляется следующим образом:
Аналогичным образом получаем формулу для вычисления дифференциала -ого порядка:
где — -ая производная функции по переменной .
Пару слов стоит сказать о вычислении дифференциала функции многих переменных, который в этом случае называется полным дифференциалом. Полный дифференциал функции, зависящей от -переменных определяется по формуле:
Выражения для дифференциалов высших порядков функции многих переменных можно получить исходя из общей формулы:
В общем случае, для возведения суммы в -ую степень необходимо воспользоваться формулой бинома Ньютона. Рассмотрим процесс получения формулы полного дифференциала второго порядка функции двух переменных:
Наш онлайн калькулятор способен вычислить дифференциалы разных порядков для любых функций одной или нескольких переменных с описанием подробного решения на русском языке.
- Примеры решений задач: функции нескольких переменных
- Примеры: область определения ФНП
- Примеры: частные производные ФНП
- Градиент, производная по направлению
- Касательная плоскость и нормаль
- Экстремумы функции нескольких переменных
- Приближенные вычисления
- Ряд Тэйлора
- Наибольшее и наименьшее значение в области
- Решение контрольной
- Помощь с решением заданий
- Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
- 📸 Видео
Видео:11. Производная неявной функции примерыСкачать
Примеры решений задач: функции нескольких переменных
В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:
Видео:18+ Математика без Ху!ни. Производная неявной функции.Скачать
Примеры: область определения ФНП
Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.
Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.
Видео:27. Дифференцирование неявной функции двух переменныхСкачать
Примеры: частные производные ФНП
Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$
Задача 4. Найти частные производные второго порядка $z=sqrt$
Задача 5. Найти частные производные сложной функции:
$$ z=u^2 cdot ln v; quad u=frac, , v=x^2+y^2.$$
Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.
Задача 7. Найти полный дифференциал данной функции
Задача 8. Найти дифференциал второго порядка функции:
Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $sin(xz)+cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.
Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.
Видео:Дифференциал функцииСкачать
Градиент, производная по направлению
Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $overline$. Вычислить наибольшую скорость изменения функции в данной точке.
Задача 13. Найдите градиент, производную по направлению $overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $overline=$, $M(1,3,1)$.
Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.
Видео:Полный дифференциалСкачать
Касательная плоскость и нормаль
Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.
Задача 16. Для кривой $overline=overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.
$$ overline(t)=(t^2-3)overline + (t^3+2)overline+ln t overline, quad t_0=1 $$
Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.
Видео:32. Второй дифференциал неявной функции примерыСкачать
Экстремумы функции нескольких переменных
Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.
Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.
Задача 20. Исследовать на экстремум функцию $z=x^4+xy+fracy^2+5$.
Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.
Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.
Видео:29. Частные производные и дифференциал функции заданной неявно. примерСкачать
Приближенные вычисления
Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.
Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.
Видео:Первая и вторая производная неявной функцииСкачать
Ряд Тэйлора
Задача 25. Разложите функцию $f(x,y)=x^2ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.
Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.
Видео:Математика Без Ху!ни. Производная функции, заданной параметрически.Скачать
Наибольшее и наименьшее значение в области
Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 le x le 1; 0le y le 2$. Сделать чертёж области $D$.
Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.
Видео:Математический анализ, 30 урок, Полный дифференциалСкачать
Решение контрольной
Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.
Видео:Математический анализ, 31 урок, Дифференцирование сложных и неявных функцийСкачать
Помощь с решением заданий
Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.
Видео:[Calculus | глава 6] Неявное дифференцирование — что здесь происходит?Скачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
📸 Видео
Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать
21. Дифференциал функцииСкачать
28. Частные производные неявной функции. примерСкачать
11. Полный дифференциал примеры решения (часть 1)Скачать
Как находить производную неявной функции - bezbotvyСкачать
Математика без Ху!ни. Логарифмическое дифференцирование.Скачать
19. Производная второго порядка неявной функцииСкачать
✓Дифференцируемая функция. Дифференциал | матан #032 | Борис ТрушинСкачать