При помощи калькулятора можно решать уравнение с дробями. Для этого просто введите заданные дроби и быстро получите результат. Калькулятор простой в использовании и выдаёт только точный ответ.
- Калькулятор
- Инструкция
- Что такое уравнение с дробями
- Универсальный математический калькулятор
- Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.
- Пояснения к калькулятору
- Упрощение выражений, раскрытие скобок, разложение многочленов на множители
- Решение уравнений и неравенств
- Решение систем уравнений и неравенств
- Вычисление выражений с логарифмами
- Вычисление пределов функций
- Решение интегралов
- Вычисление производных
- Действия над комплексными числами
- Калькулятор дробей: решение уравнений с дробями
- Онлайн калькулятор уравнений с дробями
- Как перевести смешанную дробь в обыкновенную
- Как перевести обыкновенную дробь в смешанную
- Как перевести обыкновенную дробь в десятичную
- Как перевести десятичную дробь в обыкновенную
- Как перевести дробь в проценты
- Как перевести проценты в дробь
- Сложение дробей
- Вычитание дробей
- Умножение дробей
- Деление дробей
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Калькулятор
Видео:Решить уравнение с дробями - Математика - 6 классСкачать
Инструкция
Примечание: π записывается как pi; корень квадратный как sqrt().
Шаг 1. Введите заданный пример, состоящий из дробей.
Шаг 2. Нажмите кнопку “Решить”.
Шаг 3. Получите подробный результат.
Чтобы калькулятор посчитал дроби правильно, вводите дробь через знак: “/”. Например: . Калькулятор посчитает уравнение и даже покажет на графике, почему получился такой результат.
Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать
Что такое уравнение с дробями
Уравнение с дробями – это уравнение, в котором коэффициенты являются дробными числами. Линейные уравнения с дробями решается по стандартной схеме: неизвестные переносятся в одну сторону, а известные – в другую.
Рассмотрим на примере:
Дроби с неизвестными переносятся влево, а остальные дроби – вправо. Когда переносятся числа за знак равенства, тогда у чисел знак меняется на противоположный:
Теперь нужно выполнить только действия обеих частей равенства:
.
Получилось обыкновенное линейное уравнение. Теперь нужно поделить левую и правую части на коэффициент при переменной.
Средняя оценка 2.5 / 5. Количество оценок: 66
Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать
Универсальный математический калькулятор
Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам.
Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).
Видео:Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать
Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.
Разделитель системы уравнений
Натуральный логарифм и предел:
Видео:Уравнения с дробями. Алгебра 7 класс.Скачать
Пояснения к калькулятору
- Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
- Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
- ⌫ — удалить в поле ввода символ слева от курсора.
- C — очистить поле ввода.
- При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
- Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
- Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .
Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ? Примеры | МАТЕМАТИКА 6 классСкачать
Упрощение выражений, раскрытие скобок, разложение многочленов на множители
Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.
Видео:Решение уравнений, 6 классСкачать
Решение уравнений и неравенств
Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .
Примеры решений уравнений и неравенств:
Видео:Уравнение с дробямиСкачать
Решение систем уравнений и неравенств
Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .
Примеры вычислений систем уравнений и неравенств:
Видео:Решение уравнений с дробямиСкачать
Вычисление выражений с логарифмами
В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac$$ Например, $$log_ left(5x-1right) = frac$$
Примеры решений выражений с логарифмами:
Видео:Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Вычисление пределов функций
Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .
Примеры решений пределов:
Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать
Решение интегралов
Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
∫ f(x) — для неопределенного интеграла;
b a∫ f(x) — для определенного интеграла.
В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.
Примеры вычислений интегралов:
Видео:дробное уравнение как решать для 6 классаСкачать
Вычисление производных
Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) — производная первого порядка;
f»(x) — производная второго порядка;
f»'(x) — производная третьего порядка.
f n (x) — производная любого n-о порядка.
Видео:Действия с алгебраическими дробями | Математика | TutorOnlineСкачать
Действия над комплексными числами
Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i
Видео:Сложное уравнение с дробями. Алгебра 7 класс.Скачать
Калькулятор дробей: решение уравнений с дробями
Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Онлайн калькулятор уравнений с дробями
Дробью в математике называется число, представляющее часть единицы или несколько её частей.
Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби – количество взятых этих частей целого.
Дроби бывают правильными и неправильными.
- Правильной называется дробь, у которой числитель меньше знаменателя.
- Неправильная дробь – если у дроби числитель больше знаменателя.
Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.
Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 классСкачать
Как перевести смешанную дробь в обыкновенную
Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя:
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Как перевести обыкновенную дробь в смешанную
Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:
- Поделить числитель дроби на её знаменатель
- Результат от деления будет являться целой частью
- Остаток отделения будет являться числителем
Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Как перевести обыкновенную дробь в десятичную
Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.
Видео:Уравнение. 5 класс.Скачать
Как перевести десятичную дробь в обыкновенную
Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:
- Записать дробь в виде десятичная
- Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
- Найти наибольший общий делитель и сократить дробь.
Как перевести дробь в проценты
Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.
Как перевести проценты в дробь
Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.
Сложение дробей
Алгоритм действий при сложении двух дробей такой:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Выполнить сложение дробей путем сложения их числителей.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Вычитание дробей
Алгоритм действий при вычитании двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Умножение дробей
Алгоритм действий при умножении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Деление дробей
Алгоритм действий при делении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.