Показательные уравнения с тригонометрической степенью

Видео:Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

Задача C1: тригонометрия и показательная функция — 2 вариант

17 февраля 2014

Сегодня мы разберем еще одну комбинированную задачу из части С ЕГЭ по математике, где требуется решить уравнение, содержащее в себе и показательную, и тригонометрическую функцию.

Задача C1. Решите уравнение. Найдите все корни этого уравнения, принадлежащие промежутку:

Показательные уравнения с тригонометрической степенью

Видео:11 класс, 12 урок, Показательные уравненияСкачать

11 класс, 12 урок, Показательные уравнения

Шаг 1: решение тригонометрического уравнения

Итак, нужно решить уравнение:

36 sin 2 x = 6 2sin x

Очевидно, перед нами комбинированная конструкция, содержащая в себе и показательное, и тригонометрическое уравнение.

Синус двойного угла

Как решать такое уравнение? Давайте для начала выпишем все тригонометрические функции, которые присутствуют в этом уравнении, а именно:

Что мы можем сказать о полученных выражениях? В первом (sin 2 x ) аргумент синуса — это 2х; а во втором (2sin x ) аргумент — просто x . Итак, аргументы наших тригонометрических функций не совпадают. Это первое, на что нужно обратить внимание при решении любого тригонометрического уравнения. Следовательно, каким-то образом нужно сделать так, чтобы аргументы стали одинаковыми. В данном случае все очень просто, ведь мы знаем формулу двойного угла:

sin 2 x = 2sin x · cos x;
36 2sin x cos x = 6 2sin x .

Решение показательного уравнения

Теперь у нас другая проблема: перед нами [показательное уравнение], в котором присутствуют функции с разными основаниями. Слева основание показательной степени 36, а справа — 6. И это еще один принципиальный момент: нам нужно сделать так, чтобы и слева, и справа основание показательной функции было одним и тем же. Для этого заметим, что 36 можно записать так:

Следовательно, мы можем переписать наше уравнение в следующем виде:

(6 2 ) 2sin x cos x = 6 2sin x

Теперь воспользуемся правилом возведения степени в степень: при возведении степень в степень, показатели этих степеней перемножаются. В нашем случае получаем:

( a 2 ) f ( x ) = a 2 f ( x ) ;
6 4sin x cos x = 6 2sin x .

Итак, мы получили классическое показательное уравнение, в котором основания степеней являются константами и равны друг другу. Следовательно, мы можем просто убрать их и записать:

4sin x cos x = 2sin x

Решение тригонометрического уравнения

Тригонометрическое уравнение, которое мы получили, содержит несколько элементов с тригонометрической функцией. Для решения такого уравнения предлагаю перенести все слагаемые в левую часть, в результате чего получим:

4sin x cos x − 2sin x = 0

В полученном уравнении присутствуют два алгебраических слагаемых, причем и в первом, и во втором имеется множитель 2sin x . Выносим 2sin x за скобку:

2sin x (2cos x − 1) = 0

Вынесение за скобку общего множителя

Обратите внимание: на этом шаге многие ученики допускают ошибку! Давайте я еще раз напомню, как выносить общий множитель за скобку. Для этого выпишем наше выражение еще раз:

4sin x cos x − 2sin x

Перепишем эту конструкцию следующим образом:

2 · 2sin x cos x − 2sin x

Отсюда нам нужно вынеси [общий множитель]. Как вообще определяется, что можно вынести множитель за скобку? Простым перебором: мы берем самое первое слагаемое в нашем выражении и рассматриваем самый первый множитель, входящий в это слагаемое. Таким множителем является число 2.

А теперь — вопрос: встречается ли множитель 2 во втором нашем слагаемом? Конечно, встречается! Значит, ее мы выносим и идем далее. Следующий множитель тоже 2, но второй двойки во втором слагаемом не имеется, поэтому еще одну двойку вынести за скобку мы не можем.

Идем дальше: множитель sin x . Присутствует ли sin x во втором слагаемом? Да, безусловно. И последний множитель из первого слагаемого — cos x . Есть ли он во втором слагаемом? Нет, такого множителя во втором слагаемом нет. Поэтому вынести за скобку множитель cos x мы не можем. Вот и все. Получается, что из нашей конструкции можно вынести за скобку лишь множители 2 и sin x .

2 · 2sin x cos x − 2sin x = 2sin x (2cos x − 1)

Но на этом проблемы не заканчиваются. Когда ученики записывают элементы в скобках, здесь часто допускаются совершенно нелепые ошибки. Поэтому всем своим ученикам я рассказываю одно и то же правило, которое [гарантировано] избавит вас от всех подобных проблем. Правило звучит следующим образом:

При вынесении за скобку общего множителя обязательно ставьте единицу на месте каждого вынесенного элемента!

Такая запись является гарантом того, что вы не допустите ошибку при вынесении множителя за скобку. Давайте посмотрим, как это правило сработает для нашего выражения. Записываем готовое разложение — и мы получили именно то выражение, которое у нас получилось в самом начале:

2 · 2sin x cos x − 2sin x = 2sin x (1 · 2 · 1cos x − 1 · 1) = 2sin x (2cos x − 1)

Решение простейших тригонометрических уравнений

С вынесением общего множителя за скобку разобрались, возвращаемся к нашему уравнению. Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю. Получаем несколько вариантов:

2 = 0; sin x = 0 (х = π n , n ∈ Z ); 2cos x − 1 = 0.

Очевидно, что уравнение 2 = 0 корней не имеет (Что за бред вообще?). Второе уравнение мы разобрали сразу, т.к. это был частный случай. Рассмотрим теперь последнее уравнение:

Показательные уравнения с тригонометрической степенью

Уравнение решено. Мы разобрали каждый вариант, поэтому других корней не будет.

Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Отбор корней на отрезке

Переходим ко второй части задачи C1 — отбору корней в отрезке:

Показательные уравнения с тригонометрической степенью

И снова предлагаю вашему вниманию небольшое усовершенствование.

Хитрость: отмечаем корни на тригонометрическом круге

Этот прием я разработал совсем недавно вместе со своими учениками. Суть приема проста: чертим тригонометрический круг (в простонародье — радар) и отмечаем на нем наши корни. Сначала — первую группу:

Это одна точка в самом начале круга и еще одна точка, которая диаметрально противоположна исходной.

Теперь отмечаем вторую группу корней:

Показательные уравнения с тригонометрической степенью

Поскольку период 2π k — это полный оборот окружности, никаких других точек на тригонометрическом круге точно не появится. Итого получим следующую картинку:

Показательные уравнения с тригонометрической степенью

Все, корни мы отметили. Теперь разбираемся с концами отрезка. Давайте перепишем их в таком виде:

Показательные уравнения с тригонометрической степенью

По существу, мы просто выделили целую часть — по аналогии с неправильными дробями в арифметике. Отметим эти точки на том же тригонометрическом круге:

Показательные уравнения с тригонометрической степенью

Отлично, концы искомого отрезка отмечены. Осталось грамотно отметить сам отрезок. Для этого нужно понять, как он расположен на нашем тригонометрическом круге. И вот тут многие ученики опять допускают ошибку: они путаются, в какую сторону «наматывать» этот отрезок. Ведь существует два варианта — против часовой стрелки (это правильный вариант) и по часовой (соответственно, неправильный):

Показательные уравнения с тригонометрической степенью

На самом деле, чтобы никогда больше не путаться, нужно вспомнить основное правило: мы всегда накручиваем углы в сторону, противоположную движению часовой стрелки. Например, если бы мы хотели попасть из точки 0 в точку 2π, мы бы двигались именно против часовой стрелки:

Показательные уравнения с тригонометрической степенью

Это правило все прекрасно помнят, когда считают значение тригонометрических функций. Но почему-то забывают, что это правило работает для любых отрезков, а не только в пределах от 0 до 2π. Поэтому еще раз смотрим на наш исходный отрезок, берем его левый конец, т. е. самое маленькое число −7π/2, и идем от него в наш второй конец против часовой стрелки:

Показательные уравнения с тригонометрической степенью

Прекрасно, отрезок отмечен. Для того, чтобы выявить интересующие нас корни, давайте продолжим лучи, проходящие через все корни, отмеченные красным, за пределы тригонометрического круга (по сути — до бесконечности). Таких лучей будет 4 штуки.

А теперь берем ручку, ставим ее в самый левый конец отрезка (точку −7π/2) и начинаем двигаться ко второму концу отрезка. Разумеется, мы тут же наткнемся на пересечение нашего отрезка и одного из лучей, отвечающих за корни. Так вот: любое такое пересечение означает, что мы нашли конкретный корень, который лежит на нашем рассматриваемом отрезке.

Показательные уравнения с тригонометрической степенью

Возникает вопрос: как найти числовое значение этого корня? Но и тут все очень просто. Давайте подумаем: на какое расстояние нужно шагнуть из точки −7π/2, т. е. из начала нашего отрезка, чтобы попасть на горизонтальный диаметр? Очевидно, что это расстояние равно π/2. Прибавляем к концу нашего отрезка этот самый шаг:

Показательные уравнения с тригонометрической степенью

В данном случае получилось, что этот корень уже изначально был отмечен, когда мы отмечали концы нашего отрезка: −7π/2 и −5π/2.

Если мы пойдем дальше, двигаясь из точки -3π к правому концу нашего отрезка, никаких других корней уже не встретим. Получается, что во время обхода мы столкнулись лишь с одним корнем — −3π. В принципе, это и неудивительно: в данной задаче нам попался довольно короткий отрезок, который на тригонометрическом круге занимает лишь половину полного оборота. И так уж получилось, что большинство корней, которые мы получили при решении уравнения, сосредоточены на второй половине нашего круга — в той самой, которую мы вообще не рассматривали.

В общем, не стоить удивляться, когда в процессе отбора корней у нас получился всего лишь один ответ. Это правильный ответ, и приведенный выше рисунок является полноценным тому обоснованием. Следовательно, задача решена полностью:

  1. Мы решили само уравнение, последовательно разобравшись с показательным и тригонометрическим уравнением;
  2. Затем отобрали те корни, которые лежат на требуемом отрезке, и обосновали этот выбор графически.

Видео:ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравнений

Замечание по поводу разложения на множители

Еще один тонкий момент в решении данной задачи состоит в том, что многие ученики неправильно выносят за скобку общие множители. Но это — тема отдельного урока, который вообще не относится к ЕГЭ по математике, поэтому сегодня я коснулся данного вопроса лишь вкратце. Ровно настолько, насколько это необходимо для решения конкретной задачи.

Однако если в сегодняшнем уроке вам все равно что-то непонятно, если вы хотите решать тригонометрию еще лучше, не нужно расстраиваться, просто заходите на мой сайт berdov . com . Там вас ждет еще больше уроков, а также тесты для самостоятельного решения.

Но и это еще не все: на любой странице моего сайта справа вверху есть форма для записи на занятие. Смело заполняйте ее, указывайте свое имя, телефон и хоть немного расскажите о своей математической проблеме. И как только вы нажмете на кнопку «Записаться», буквально через несколько секунд я получу ваше сообщение, и в течение нескольких минут (максимум — нескольких часов) я вам позвоню, и мы обсудим все интересующие проблемы и составим индивидуальную программу обучения, рассчитанную именно на вас.

И вот тогда вы точно убедитесь, что математика — это, на самом деле, легко, что никаких сложных формул и теорем в ней нет. Тем более, в школьном курсе. Пишите, звоните, приходите — и будем заниматься. А у меня на сегодня все. С Вами был Павел Бердов. До новых встреч!

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Задания по теме «Показательно-тригонометрические уравнения»

Открытый банк заданий по теме показательно-тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Видео:ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ😩 #математика #shorts #егэ #огэ #уравнение #показательныеуравненияСкачать

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ😩 #математика #shorts #егэ #огэ #уравнение #показательныеуравнения

Задание №1168

Условие

а) Решите уравнение 0,2^-26cdot 0,2^+25=0.

б) Укажите корни этого уравнения, принадлежащие отрезку left[ -pi ; frac2right].

Решение

а) Запишем уравнение в виде

5cdot 0,2^-26sqrt 5cdot 0,2^+25=0. После замены t=0,2^ исходное уравнение примет вид 5t^2-26sqrt 5t+25=0. Корни этого уравнения t=5sqrt 5, t=frac1. Возвращаясь к переменной x , получим:

Первое уравнение совокупности не имеет корней. Решая второе уравнение, получим:

x=pm fracpi 3+2pi n, n in mathbb Z.

б) Запишем решение уравнения в виде x=fracpi 3 +2pi k, k in mathbb Z или x=-fracpi 3+2pi n,nin mathbb Z и выясним, для каких целых значений n и k справедливы неравенства -pi leqslant -frac 3+2pi n leqslant frac2 и -pi leqslant fracpi 3+2pi kleqslant frac2.

Получим: -frac13leqslant nleqslant frac и -frac23leqslant kleqslant frac, откуда следует, что два целых значения n=0 и k=0 удовлетворяют соответствующим неравенствам.

При n=0enspace x=fracpi 3+2picdot 0=fracpi 3.

При k=0enspace x=-fracpi 3+2picdot 0=-fracpi 3.

Итак, fracpi 3 и -fracpi 3 — корни уравнения, принадлежащие промежутку left[ -pi ; frac2right].

Ответ

а) pmfracpi 3+2pi n, nin mathbb Z;

б) -fracpi 3, fracpi 3;

Видео:Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Видео:Как решать Показательные Уравнения? (часть 2)Скачать

Как решать Показательные Уравнения? (часть 2)

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

Воспользуемся одним из свойств степеней ((a^n)^m=a^):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Видео:Показательные уравнения. Часть 3 из 3. Однородные уравненияСкачать

Показательные уравнения. Часть 3 из 3. Однородные уравнения

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где (a,b) какие-то положительные числа. ((a>0, ; b>0).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^=125 Rightarrow 5^=5*5*5 Rightarrow 5^=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^=81 Rightarrow (3*3)^=3*3*3*3 Rightarrow(3^2)^=3^4 Rightarrow 3^=3^4 Rightarrow 8x=4 Rightarrow x=frac.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение (t):

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac)^x):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой ((a*b)^n=a^n*b^n):

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

🎥 Видео

Показательное уравнение с тригонометрическими функциями в степениСкачать

Показательное уравнение с тригонометрическими функциями в степени

Показательная функция. 11 класс.Скачать

Показательная функция. 11 класс.

Показательные уравнения. Задание 13 | Математика ЕГЭ | УмскулСкачать

Показательные уравнения. Задание 13 | Математика ЕГЭ | Умскул

Сложные показательные уравнения: примеры и способы решенияСкачать

Сложные показательные уравнения: примеры и способы решения

Профильный ЕГЭ 2022. Показательные уравнения. Задание 1Скачать

Профильный ЕГЭ 2022. Показательные уравнения. Задание 1

Показательные уравнения — что это такое и как решатьСкачать

Показательные уравнения — что это такое и как решать

Задание 12 ЕГЭ профиль Показательное уравнение с тригонометриейСкачать

Задание 12  ЕГЭ профиль  Показательное уравнение с тригонометрией

ЕГЭ. Промежуточный срез №3 «Показательные и логарифмические функции. Тригонометрия». ПрактикаСкачать

ЕГЭ. Промежуточный срез №3 «Показательные и логарифмические функции. Тригонометрия». Практика

Показательные уравнения. Часть 1 из 3. Простейшие (?)Скачать

Показательные уравнения. Часть 1 из 3. Простейшие (?)
Поделиться или сохранить к себе: