Показательное уравнение с параметром егэ

Показательные и логарифмические уравнения с параметром

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.

Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^)=5) имеет единственное решение.

Заметим, что (a+1 > 0), так как (4^x+4^ > 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_=frac<5±sqrt> .$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±frac$$ (a=-3.5 -) не подходит;
(a=1.5;)

Видео:№18 Показательные уравнения с параметром. Подготовка к ЕГЭ по математике.Скачать

№18 Показательные уравнения с параметром. Подготовка к ЕГЭ по математике.

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).

Перейдем от суммы логарифмов к их произведению:

При условии, что (1-4a≥0 ⇔ 0 0).

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac-frac<sqrt>$$ не подходит, так как ( x>0.)

Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.

При помощи равносильного преобразования приведем наше уравнение к виду:

Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)

Полученное квадратное уравнение должно иметь корни (0 0, \D≥0, \D>0, \ _>0; end $$ $$ begin a>0, \1-4a>0, \ 1/2>0; end $$ $$ begin a>0, \a

Видео:Сможешь решить уравнение с параметром? Из ЕГЭ 2019Скачать

Сможешь решить уравнение с параметром? Из ЕГЭ 2019

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида Показательное уравнение с параметром егэ– показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Показательное уравнение с параметром егэ

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Показательное уравнение с параметром егэ

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида Показательное уравнение с параметром егэ

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то Показательное уравнение с параметром егэ, один корень.

Задание 1. Решить уравнение Показательное уравнение с параметром егэ.

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Показательное уравнение с параметром егэ

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Показательное уравнение с параметром егэ

Ответ:

Показательное уравнение с параметром егэ

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида Показательное уравнение с параметром егэ

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Показательное уравнение с параметром егэ

Ответ:

Показательное уравнение с параметром егэ

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Показательное уравнение с параметром егэ

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Показательное уравнение с параметром егэ

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если Показательное уравнение с параметром егэодно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Показательное уравнение с параметром егэ

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Показательное уравнение с параметром егэ

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Показательное уравнение с параметром егэ

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение Показательное уравнение с параметром егэ. имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.

Видео:№ 18 ЕГЭ Параметр. Уравнение показательное с параметромСкачать

№ 18 ЕГЭ Параметр. Уравнение показательное с параметром

165 задач с параметрами

1. Линейные уравнения и приводимые к ним уравнения с параметрами.
2. Квадратичные и сводимые к ним уравнения с параметрами.
3. Уравнения с параметрами, содержащие модуль.
4. Системы уравнений с параметрами.
5. Иррациональные уравнения с параметрами.
6. Линейные неравенства и неравенства, приводимые к линейным. Системы неравенств.
7. Квадратичные неравенства с параметрами.
8. Иррациональные неравенства с параметрами.
9. Уравнения и неравенства с параметрами, содержащие логарифмы.
10. Тригонометрические уравнения, неравенства и системы уравнений с параметрами.

🔥 Видео

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Решаем неравенство с параметром. ЕГЭ №18 | Математика TutorOnlineСкачать

Решаем неравенство с параметром. ЕГЭ №18 | Математика TutorOnline

Задание С5. Показательное уравнение с параметром - bezbotvyСкачать

Задание С5. Показательное уравнение с параметром - bezbotvy

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический метод

Задача 18. Показательное уравнение с параметромСкачать

Задача 18. Показательное уравнение с параметром

Показательное уравнение с параметром.Скачать

Показательное уравнение с параметром.

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Показательное уравнение с параметром.Скачать

Показательное уравнение с параметром.

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис Трушин

«Показательное уравнение» #умскул #умскул_профильнаяматематика #аделияадамоваСкачать

«Показательное уравнение» #умскул #умскул_профильнаяматематика #аделияадамова

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математике

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Два показательных уравнения с параметром (ЕГЭ. Профиль. Задача 18, ЕГЭ 2016)Скачать

Два показательных уравнения с параметром (ЕГЭ. Профиль. Задача 18, ЕГЭ 2016)

Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля

Теория к ЕГЭ 7 | Логарифмическое уравнение с параметромСкачать

Теория к ЕГЭ 7 | Логарифмическое уравнение с параметром
Поделиться или сохранить к себе: