Поиск корней нелинейного уравнения питон

Как решить пару нелинейных уравнений с использованием Python?

Каков наилучший способ решения пары нелинейных уравнений с использованием Python. (Numpy, Scipy или Sympy)

Фрагмент кода, который решает вышеупомянутую пару, будет отличным

Содержание
  1. ОТВЕТЫ
  2. Ответ 1
  3. Ответ 2
  4. Ответ 3
  5. Ответ 4
  6. Ответ 5
  7. Ответ 6
  8. Ответ 7
  9. Ответ 8
  10. Краткий ответ: используйте fsolve
  11. Аналитические решения?
  12. Точность числовых решений
  13. Численные методы решения систем нелинейных уравнений
  14. Введение
  15. Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений
  16. Методы решения систем нелинейных уравнений
  17. Выбор модельной функции
  18. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней
  19. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона
  20. Python: поиск нескольких корней нелинейного уравнения
  21. 3 ответов
  22. 🎬 Видео

Видео:34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

ОТВЕТЫ

Ответ 1

для численного решения, вы можете использовать fsolve:

Ответ 2

Если вы предпочитаете sympy, вы можете использовать nsolve.

Первый аргумент — это список уравнений, второй — список переменных, а третий — исходное предположение.

Ответ 3

Попробуйте это, я заверяю вас, что он будет работать отлично.

FYI. как упоминалось выше, вы также можете использовать «приближение Бройдена», заменив «fsolve» на «broyden1». Оно работает. Я сделал это.

Я точно не знаю, как работает приближение Бройдена, но это заняло 0,02 с.

И я рекомендую вам не использовать функции Sympy

Ответ 4

Ответ 5

Вы можете использовать пакет openopt и его метод NLP. Он имеет множество алгоритмов динамического программирования для решения нелинейных алгебраических уравнений, состоящих из:
goldenSection, scipy_fminbound, scipy_bfgs, scipy_cg, scipy_ncg, amsg2p, scipy_lbfgsb, scipy_tnc, bobyqa, ralg, ipopt, scipy_slsqp, scipy_cobyla, lincher, algencan,, которые вы можете выбрать.
Некоторые из последних алгоритмов могут решить проблему ограниченного нелинейного программирования. Итак, вы можете ввести свою систему уравнений в openopt.NLP() с такой функцией:

lambda x: x[0] + x[1]**2 — 4, np.exp(x[0]) + x[0]*x[1]

Ответ 6

Я получил метод Бройдена для работы с связанными нелинейными уравнениями (как правило, с участием многочленов и экспонент) в IDL, но я не пробовал его в Python:

Найти корень функции, используя первое приближение Я. Я. Брайденса.

Этот метод также известен как «хороший метод Бройденса».

Ответ 7

Альтернативой fsolve является root :

Если вы затем проверите

подтверждая правильность решения.

Ответ 8

Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать

Решение n го нелинейных алгебраических  уравнений в Python

Краткий ответ: используйте fsolve

Как упоминалось в других ответах, самое простое решение конкретной поставленной вами проблемы — использовать что-то вроде fsolve :

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Аналитические решения?

Вы говорите, как «решить», но есть разные варианты решения. Поскольку вы упоминаете SymPy, я должен указать на самое большое различие между тем, что это может означать, а именно между аналитическими и числовыми решениями. Конкретный пример, который вы привели, не имеет (простого) аналитического решения, как другие системы нелинейных уравнений. Когда есть доступные аналитические решения, SymPY часто может найти их для вас:

Обратите внимание, что в этом примере SymPy находит все решения и не требует предварительной оценки.

Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать

Решение 1 го нелинейного алгебраического уравнения в Python

Точность числовых решений

Однако большинство систем нелинейных уравнений не будет иметь подходящего аналитического решения, поэтому использование SymPy, как описано выше, прекрасно, когда оно работает, но не всегда применимо. Вот почему мы в конечном итоге ищем числовые решения, хотя и с числовыми решениями: 1) У нас нет гарантии, что мы нашли все решения или «правильное» решение, когда их много. 2) Мы должны предоставить первоначальное предположение, которое не всегда легко.

Приняв, что нам нужны числовые решения, что-то вроде fsolve , как правило, сделает все, что вам нужно. Для такого рода проблем SymPy, вероятно, будет намного медленнее, но он может предложить что-то еще, что более точно находит (числовые) решения:

Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме Поиск корней нелинейного уравнения питон, возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

Поиск корней нелинейного уравнения питон(1)

Обозначим через Поиск корней нелинейного уравнения питонвектор неизвестных и определим вектор-функцию Поиск корней нелинейного уравнения питонТогда система (1) записывается в виде уравнения:

Поиск корней нелинейного уравнения питон(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Поиск корней нелинейного уравнения питон

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

Поиск корней нелинейного уравнения питон(3)

Определим матрицу Якоби:

Поиск корней нелинейного уравнения питон(4)

Запишем(3) в виде:

Поиск корней нелинейного уравнения питон(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

Поиск корней нелинейного уравнения питон(6)

где Поиск корней нелинейного уравнения питон— итерационные параметры, a Поиск корней нелинейного уравнения питон— квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Поиск корней нелинейного уравнения питон

Система линейных уравнений (5) для нахождения нового приближения Поиск корней нелинейного уравнения питонможет решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

Поиск корней нелинейного уравнения питон(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

Поиск корней нелинейного уравнения питон(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Видео:Программа, определяющая корни квадратного уравнения. Язык программирования Python.Скачать

Программа, определяющая корни квадратного уравнения. Язык программирования Python.

Python: поиск нескольких корней нелинейного уравнения

примите следующую функцию:

С x = [-2.5, 2.5] эта функция пересекает 0 at f(0) = 0 и f(-0.71238898) = 0 .

это было определено со следующим кодом:

Как правильно использовать fzero (или любой другой Python root finder), чтобы найти оба корня в одном вызове? Есть ли другой scipy функция, которая делает это?

Видео:Алгоритмы. Нахождение корней уравнения методом хордСкачать

Алгоритмы. Нахождение корней уравнения методом хорд

3 ответов

определите свою функцию так, чтобы она могла принять скалярный или массив numpy в качестве аргумента:

затем передайте вектор аргументов в fsolve .

Я однажды написал модуль для этой задачи. Он основан на главе 4.3 из книги численные методы в технике с Python от Jaan Kiusalaas:

roots находит все корни f в интервале [ a , b ].

В общем случае (т. е. если ваша функция не принадлежит к определенному классу) вы не можете найти все глобальные решения — эти методы обычно выполняют локальную оптимизацию из заданных начальных точек.

🎬 Видео

Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать

Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Решение нелинейного уравнения методом половинного деления (программа)Скачать

Решение нелинейного уравнения методом половинного деления (программа)

#5. Математические функции и работа с модулем math | Python для начинающихСкачать

#5. Математические функции и работа с модулем math | Python для начинающих

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Вычислительная математика. Метод касательных на Python(1 практика).Скачать

Вычислительная математика. Метод касательных на Python(1 практика).

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.

Решение нелинейных уравненийСкачать

Решение нелинейных уравнений

Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать

Метод Ньютона | Лучший момент из фильма Двадцать одно  21

Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать

Решение нелинейного уравнения методом Ньютона (касательных) (программа)

Математика это не ИсламСкачать

Математика это не Ислам

Как решить линейное и квадратное уравнение в Python?Скачать

Как решить линейное и квадратное уравнение в Python?

Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)
Поделиться или сохранить к себе: