Подбор коэффициентов в уравнениях овр

Видео:Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:Расстановка коэффициентов в окислительно-восстановительных реакцияхСкачать

Расстановка коэффициентов в окислительно-восстановительных реакциях

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Окислительно-восстановительные реакции

Подбор коэффициентов в уравнениях оврРеакции, которые называют окислительно-восстановительными (ОВР), происходят с изменением степеней окисления атомов, находящихся в составе молекул реагентов. Эти изменения происходят в связи с переходом электронов от атомов одного элемента к другому.

Процессы, протекающие в природе и осуществляемые человеком, в большинстве своём представляют ОВР. Такие важнейшие процессы, как дыхание, обмен веществ, фотосинтез (6CO2+H2O = C6H12O6 + 6O2), — всё это ОВР.

В промышленности с помощью ОВР получают аммиак, серную, соляную кислоты и многое другое.

Восстановление металлов из руд — фактически основа всей металлургической промышленности — тоже окислительно-восстановительные процессы. Например, реакция получения железа из гематита: 2Fe2O3 + 3С = 4Fe+3CO2.

Видео:8 класс. Химия. Как расставить коэффициенты в уравнении?Скачать

8 класс. Химия. Как расставить коэффициенты в уравнении?

Окислители и восстановители: характеристика

Подбор коэффициентов в уравнениях оврАтомы, которые в процессе химического превращения электроны отдают, называются восстановителями, их степень окисления (СО) в результате увеличивается. Атомы, принимающие электроны, называют окислителями, и их СО уменьшается.

Говорят, что окислители, принимая электроны, восстанавливаются, а восстановители — окисляются в процессе отдачи электронов.

Важнейшие представители окислителей и восстановителей представлены в следующей таблице:

Типичные окислителиТипичные восстановители
Простые вещества, состоящие из элементов с высокой электроотрицательностью (неметаллы): йод, фтор, хлор, бром, кислород, озон, сера и т. п.Простые вещества, состоящие из атомов элементов с низкой электроотрицательностью (металлы или неметаллы): водород H2, углерод C (графит), цинк Zn, алюминий Al, кальций Ca, барий Ba, железо Fe, хром Cr и так далее.
Молекулы или ионы, содержащие в составе атомы металлов или неметаллов с высокими степенями окисления:

  • оксиды (SO3, CrO3, CuO, Ag2O и др.),
  • кислоты (HClO4, HNO3, HMnO4 и др.),
  • соли (KMnO4, KNO3, K2Cr2O4, Na2Cr2O7, KClO3, FeCl3 и др.).
Молекулы или ионы, имеющие в своём составе атомы металлов или неметаллов с низкими степенями окисления:

  • водородные соединения (HBr, HI, HF, NH3 и т. д.),
  • соли (бескислородных кислот — K2S, NaI, соли сернистой кислоты, MnSO4 и др.),
  • оксиды (CO, NO и др.),
  • кислоты (HNO2, H2SO3, H3PO3 и др.).
Ионные соединения, содержащие катионы некоторых металлов с высокими СО: Pb3+, Au3+, Ag+, Fe3+ и другие.Органические соединения: спирты, кислоты, альдегиды, сахара.

Подбор коэффициентов в уравнениях оврНа основе периодического закона химических элементов чаще всего можно предположить окислительно-восстановительные способности атомов того или иного элемента. По уравнению реакции также несложно понять, какие из атомов являются окислителем и восстановителем.

Как определить, является атом окислителем или восстановителем: достаточно записать СО и понять, какие атомы её увеличили впроцессе реакции (восстановители), а какие уменьшили (окислители).

Вещества с двойственной природой

Подбор коэффициентов в уравнениях оврАтомы, имеющие промежуточные СО, способны и принимать и отдавать электроны, в результате этого вещества, содержащие в своём составе такие атомы, будут иметь возможность проявить себя как окислителем, так и восстановителем.

Примером может быть пероксид водорода. Содержащийся в его составе кислород в СО -1 может как принять электрон, так и отдать его.

При взаимодействии с восстановителем пероксид проявляет окислительные свойства, а с окислителем — восстановительные.

Рассмотреть подробнее можно при помощи следующих примеров:

  • восстановление (пероксид выступает как окислитель) при взаимодействии с восстановителем,

SO2 + H2O2 = H2SO4

  • окисление (пероксид является в этом случае восстановителем) при взаимодействии с окислителем.

2KMnO4 + 5H2O2 + 3H2SO4 = 2MnSO4 + 5О2 + K2SO4 + 8H2O

Видео:ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Классификация ОВР: примеры

Различают следующие типы окислительно-восстановительных реакций:

  • межмолекулярное окисление-восстановление (окислитель и восстановитель находятся в составе разных молекул),
  • внутримолекулярное окисление-восстановление (окислитель находится в составе той же молекулы, что и восстановитель),
  • диспропорционирование (окислителем и восстановителем является атом одного и того же элемента),
  • репропорционирование (окислитель и восстановитель образуют в результате реакции один продукт).

Примеры химических превращений, относящихся к различным типам ОВР:

  • Внутримолекулярные ОВР — это чаще всего реакции термического разложения вещества:

2KCLO3 = 2KCl + 3O2

(NH4)2Cr2O7 = N2 + Cr2O3 + 4H2O

2NaNO3 = 2NaNO2 + O2

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O

2Al + Fe2O3 = Al2O3 + 2Fe

3Br2 + 6KOH = 5KBr + KBrO3 + 6H2O

3HNO2 = HNO3 + 2NO + H2O

2NO2 + H2O = HNO3 + HNO2

4KClO3 = KCl + 3KClO4

2H2S + SO2 = 3S + 2H2O

HOCl + HCl = H2O + Cl2

Токовые и бестоковые ОВР

Подбор коэффициентов в уравнениях оврОкислительно-восстановительные реакции также разделяют на токовые и бестоковые.

Первый случай — это получение электрической энергии за счёт химической реакции (такие источники энергии могут использоваться в двигателях машин, в радиотехнических устройствах, приборах управления), либо электролиз, то есть химическая реакция, наоборот, возникает за счёт электроэнергии (с помощью электролиза можно получать различные вещества, обрабатывать поверхности металлов и изделий из них).

Примерами бестоковых ОВР можно назвать процессы горения, коррозии металлов, дыхания и фотосинтеза и т.д.

Видео:89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

Метод электронного баланса ОВР в химии

Подбор коэффициентов в уравнениях оврУравнения большинства химических реакций уравниваются несложным подбором стехиометрических коэффициентов. Однако при подборе коэффициентов для ОВР можно столкнуться с ситуацией, когда количество атомов одних элементов не удаётся уравнять, не нарушая при этом равенство количеств атомов других. В уравнениях таких реакций подбирают коэффициенты методом составления электронного баланса.

Основывается метод на том, что сумма принимаемых окислителем электронов и количество отдаваемых восстановителем приводится к равновесию.

Метод складывается из нескольких этапов:

  1. Записывается уравнение реакции.
  2. Определяются СО элементов.
  3. Определяются элементы, которые в результате реакции изменили свои степени окисления. Отдельно записываются полуреакции окисления и восстановления.
  4. Подбираются множители для уравнений полуреакций так, чтобы уравнять принятые в полуреакции восстановления и отданные в полуреакции окисления электроны.
  5. Подобранные коэффициенты проставляются в уравнение реакции.
  6. Подбираются остальные коэффициенты реакции.

На простом примере взаимодействия алюминия с кислородом удобно написать уравнивание поэтапно:

  • Уравнение: Al + O2 = Al2О3
  • СО у атомов в простых веществах алюминия и кислорода равны 0.

Al0 + O20 = Al+32O-23

  • Подбираем коэффициенты, при умножении на которые сравняется количество принятых и количество отданных электронов будет одинаковым:

Al0 -3е = Al+3 коэффициент 4,

O20 +4e = 2O-2 коэффициент 3.

  • Проставляем коэффициенты в схему реакции:

4Al + 3O2 = Al2O3

  • Видно, что для уравнивания всей реакции достаточно поставить коэффициент перед продуктом реакции:

4Al + 3O2 = 2Al2O3

Примеры заданий на составление электронного баланса

Могут встречаться следующие задания на уравнивания ОВР:

  • Взаимодействие перманганата калия с хлоридом калия в кислой среде с выделением газообразного хлора.

Подбор коэффициентов в уравнениях оврМарганцевокислый калий KMnO4 (перманганат калия, «марганцовка») — сильный окислитель за счёт того, что в KMnO4 степень окисления Mn равна +7. С его помощью часто получают газообразный хлор в лабораторных условиях по следующей реакции:

KCl + KMnO4 + H2SO4 = Cl2 + MnSO4 + K2SO4 + H2O

K+1Cl-1 + K+1Mn+7O4-2 + H2+1S+6O4-2 = Cl20 + Mn+2S+6O4-2 + K2+1S+6O4-2 + H2+1O-2

Как видно после расстановки СО, атомы хлора отдают электроны, повышая свою СО до 0, а атомы марганца электроны принимают:

Mn+7 +5е = Mn+2 множитель два,

2Cl-1 -2е = Cl20 множитель пять.

Проставляем в уравнение коэффициенты в соответствии с подобранными множителями:

10K+1Cl-1 + 2K+1Mn+7O4-2 +H2SO4 = 5Cl20 + 2Mn+2S+6O4-2 + K2SO4 + H2O

Уравниваем количество остальных элементов:

10KCl + 2KMnO4 + 8H2SO4 = 5Cl2 + 2MnSO4 + 6K2SO4 + 8H2O

  • Взаимодействие меди (Cu) с концентрированной азотной кислотой(HNO3) с выделением газообразного оксида азота (NO2):

Cu + HNO3(конц.) = NO2 ­ + Cu(NO3)2 + 2H2O

Cu0 + H+1N+5O3-2 = N+4O2 ­ + Cu+2(N+5O3-2)2 + H2+1O-2

Как видно, атомы меди повышают свою СО с нуля до двух, а атомы азота — снижают с +5 до +4

Cu0 -2е = Cu+2 множитель один,

N+5 +1е = N+4 множитель два.

Проставляем в уравнение коэффициенты:

Cu0 + 4H+1N+5O3-2 = 2N+4O2 ­ + Cu+2(N+5O3-2)2 + H2+1O-2

Уравниваем остальные элементы:

Cu + 4HNO3(конц.) = 2NO2 ­ + Cu (NO3)2 + 2H2O

  • Взаимодействие дихромата калия с Н2S в кислой среде:

Запишем схему реакции, расставим СО:

К2+1Сr2+6О7-2 + Н2+1S-2 + Н2+1S+6O4-2 = S0 + Сr2+3(S+6O4-2)3 + K2+1S+6O4-2 + H2O

S-2 –2e = S0 коэффициент 3,

2Cr+6 +6e = 2Cr+3 коэффициент 1.

К2Сr2О7 + 3Н2S + Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + Н2О

Уравниваем остальные элементы:

К2Сr2О7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + 7Н2О

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Влияние реакционной среды

Характер среды влияет на протекание тех или иных ОВР. Роль реакционной среды можно проследить на примере взаимодействия перманганата калия (KMnO4) и сульфита натрия (Na2SO3) при различных значениях рН:

  1. Na2SO3 + KMnO4 = Na2SO4 + MnSO4 + K2SO4 (pH &lt,7 кислая среда),
  2. Na2SO3 + KMnO4 = Na2SO4 + MnO2 + KOH (pH =7 нейтральная среда),
  3. Na2SO3 + KMnO4 = Na2SO4 + K2MnO4 + H2O (pH &gt,7 щелочная среда).

Видно, что изменение кислотности среды приводит к образованию разных продуктов взаимодействия одних и тех же веществ. При изменении кислотности среды они происходят и для других реагентов, вступающих в ОВР. Аналогично показанным выше примерам реакции с участием дихромат-иона Cr2O72- будут проходить с образованием разных продуктов реакции в различных средах:

Видео:Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Составление уравнений окислительно-восстановительных реакций

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Составление уравнений окислительно-восстановительных реакций.

Для составления уравнений окислительно-восстановительных реакций и определения коэффициентов применяют два метода: метод электронного баланса и ионно-электронный метод (метод полуреакций).

Метод электронного баланса является более простым и учитывает изменение степени окисления элементов в реакциях. Ионно-электронный метод учитывает характер химической связи в молекуле и наличие тех ионов, которые в действительности существуют в растворе, например, MnO4 – , SO4 2- , Cr2O7 2- . При реакциях окисления-восстановления электроны не берутся откуда-то со стороны, а только переходят от одних атомов или ионов к другим, поэтому число электронов, принятых окислителем, равно числу электронов, отданных восстановителем. При составлении уравнений окислительно-восстановительных реакций для того, чтобы правильно написать продукты реакции, необходимо знать свойства реагирующих веществ.

8.3.1.Метод электронного баланса.

Подбор коэффициентов в реакции методом электронного баланса осуществляется по следующей схеме:

1) Составить схему реакции

Разбавленная азотная кислота с а) неактивными металлами (Cu), б) неметаллами (P, As, S) и в) производными этих неметаллов (AsH3, PH3, As2S3) образует оксид азота (II), понижая свою степень окисления:

Атом элемента в своей высшей положительной степени окисления является окислителем, следовательно, окислитель

Атом фосфора проявляет восстановительные свойства в данной реакции, отдавая электроны с последнего энергетического уровня и повышая свою степень окисления до +5.

Следовательно, молекулярное уравнение реакции имеет следующий вид:

2) Определить величину и знак степени окисления элементов до реакции и после реакции.

Подбор коэффициентов в уравнениях овр

3) Составить электронный баланс

Подбор коэффициентов в уравнениях овр

4) Подставить найденные коэффициенты в уравнение реакции.

5) Подсчитать количество атомов водорода в правой и левой части равенства и уравнять их за счет добавления молекул воды в ту часть равенства, где их недостаточно.

6) Подсчитать количество атомов кислорода.

При правильно написанном и решенном уравнении количество атомов кислорода в правой и левой части равенства совпадает.

Пример 1. Написать уравнение окислительно-восстановительной реакции, подобрав коэффициенты к нему: FeSO4 + KMnO4 + H2SO4→ Fe2(SO4)3 + + MnSO4 + K2SO4 + H2O. Определяем степень окисления элементов до реакции и после реакции.

Составляем уравнения электронного баланса

Подбор коэффициентов в уравнениях овр

Подставляем найденные коэффициенты в уравнение реакции. Подсчитываем количество групп в правой части уравнения (15+2+1=18), добавляем в левую часть равенства недостающие -группы в виде коэффициента при H2SO4. уравниваем число атомов водорода в правой и левой части равенства.

Правильность написанного уравнения проверяем по числу атомов кислорода в правой и левой части равенства.

8.3.2. Ионно-электронный метод.

При составлении электронно-ионных уравнений следует исходить не из изменения степени окисления элементов в реагирующих веществах, а нужно учитывать действительно существующие ионы в водном растворе с точки зрения теории электролитической диссоциации. Например, если реакция происходит с участием перманганата калия, то в реакции окислителем будут ионы MnO4 – , а не ионы Mn 7+ , так как перманганат калия в водном растворе диссоциирует KMnO4↔K + +MnO4 – . При этом вещества неионного характера и недиссоциирующие изображаются в электронных уравнениях в виде молекул: NH3, CO, NO2, SiO2, P.

В окислительно-восстановительных реакциях могут получаться различные продукты реакции в зависимости от характера среды – кислой, щелочной, нейтральной. Для таких реакций в молекулярной схеме необходимо указывать окислитель, восстановитель и вещество, характеризующее реакцию среды (кислоту, щелочь, воду). В этом случае в ионном уравнении необходимо руководствоваться правилами стяжения, указывать ионы, характеризующие реакцию среды: H + , OH – , H2O. Правила стяжения сводятся к следующему:

1. В кислой среде избыток ионов O +2 образует с ионами H + молекулы воды:

2. В нейтральной или щелочной среде избыток ионов O 2- образует с молекулами воды гидроксид – ионы:

3. В щелочной среде недостаток ионов O 2– компенсируется двумя ионами OH – , одновременно образуется одна молекула воды:

Реакция средыИзбыток ионов О 2–Недостаток ионов О 2–
окислительвосстановитель
КислаяН + Н2ОН2O 2Н +
изб. O 2– + 2H + = Н2ОН2О 2Н + + O 2–
Нейтраль­наяH2O OH –Н2O 2Н +
изб. О 2– + Н2О 2OН –Н2О 2Н + + О 2–
ЩелочнаяН2O ОН –2OН – Н2О
изб. О 2– + Н2O 2OН –2OН – Н2О + О 2–

Разберем на конкретных примерах.

Пример 1. Составить уравнение реакции, которая протекает при пропускании сероводорода Н2S через подкисленный раствор перманганата калия КМnO4

При протекании реакции малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образования элементарной серы из сероводорода:

В этой схеме число атомов одинаково в левой и правой частях. Для уравнивания зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:

Эта первая полуреакция — процесс окисления восстановителя H2S.

Обесцвечивание раствора связано с переходом иона МnО – 4 (он имеет малиновую окраску) в ион Mn 2+ (почти бесцветный и лишь при большой концентрации имеет розоватую окраску), что можно выразить схемой

Опыт показывает, что в кислом растворе кислород, входящий в состав ионов MnO – 4, вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:

Чтобы стрелку заменить на знак равенства, надо уравнять и за­ряды. Поскольку исходные вещества имеют семь положительных заря­дов (7+), а конечные – два положительных (2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:

MnO – 4 + 8H + +5e – = Mn 2+ +4H2О

Это вторая полуреакция – процесс восстановления окислителя – иона MnO – 4.

Для составления общего (суммарного) уравнения реакции надо уравнение полуреакций почленно суммировать, предварительно уравнять число отданных и полученных электронов. В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются равенства полуреакций. Сокращенно запись проводится так:

Подбор коэффициентов в уравнениях овр

Сократив на 10 Н + , окончательно получим

Проверяем правильность составленного ионного уравнения. В примере число атомов кислорода в левой части 8, в правой 8; число зарядов в левой части (2-) + (6+) == 4+, в правой 2(2+) = 4+. Уравне­ние составлено правильно.

Методом полуреакций составляется ионное уравнение реакции. Чтобы от ионного уравнения перейти к молекулярному, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону — анион. Затем такие же ионы в таком же количестве записываем и в правую часть уравнения, после чего ионы объединяем в молекулы:

Пример 2. Реакция среды кислая

Подбор коэффициентов в уравнениях овр

1. Составить схему реакции

Из опытных данных знаем, что окислителем является КМnO4. Ион MnO4 – восстанавливается в кислой среде до Мn 2+ (фиолетово-малиновая окраска иона MnO4 – становит­ся бесцветной, переходя в Мn 2+ – ион), следовательно, ион SO3 2 – будет являться восстановителем, переходя в ион SO4 2- .

2. Составить электронно-ионные уравнения

а) для окислителя

Из ионной схемы видно, что, ион MnO4 – – превращается в ион Мn 2+ , при этом освобождаются ионы О 2- , которые по правилу стяжения в кислой среде связываются ионами Н + , образуя молекулы Н2O.

б) для восстановителя

Из ионной схемы видно, что ион SO3 2- превращается в ион SO4 2- . Для этого превращения необходимо добавить ион О 2- , который берется из молекулы H2O (реакция протекает в водной среде), при этом освобождаются два иона Н+.

3. Подсчитать число зарядов в правой и левой части равенства, добавляя или уменьшая необходимое число электронов. Алгебраическая сумма зарядов в обеих частях равенства должна быть одинакова.

MnO4 – + 8H + + 5ē = Mn 2+ + 4H2O

4. Найти основные коэффициенты, т. е. коэффициенты при окислителе и восстановителе:

Подбор коэффициентов в уравнениях овр

5. Написать суммарное электронно-ионное уравнение, учи­тывая найденные коэффициенты:

6. Сократить в левой и правой части уравнения 10 Н + и 5Н2O. Получается ионное уравнение:

7. По ионному уравнению составить молекулярное уравнение реакции:

8. Число ионов и атомов каждого элемента в правой и ле­вой части равенства, должно быть равно.

Пример 3. Реакция среды щелочная.

1. Составить схему реакции

Окислителем в данной реакции является молекула брома, следовательно, восстановителем будет являться метахромит калия, а именно ион СrO2 – .

2. Составить электронно-ионное уравнение

а) для окислителя

б) для восстановителя

Из ионной схемы видно, что ион CrO2 – превращается в ион СгО4 2– . Каждый недостающий ион О 2– берется по пра­вилу стяжения из двух гидроксильных ионов (среда щелочная ОН – ), при этом одновременно образуется одна молекула воды.

3. Подсчитать число зарядов в правой и левой части ра­венства. Найти коэффициенты при окислителе и восстанови­теле.

Подбор коэффициентов в уравнениях овр

4. Написать суммарное уравнение, учитывая найденные коэффициенты:

5. По ионному уравнению составить молекулярное уравне­ние реакции.

6. Число атомов и ионов каждого элемента в правой и ле­вой части уравнения должно быть равно.

Пример 4. Реакция среды нейтральная.

1. Составить схему реакции

Окислителем является КМnO4, так как ион элемента в своей высшей степени окисления не способен более отдавать электроны (Мn +7 ). Восстановителем является сульфит калия K2SO3.

2. Составить электронно-ионное уравнение

а) для окислителя

В нейтральной среде избыток ионов кислорода стягивается с молекулами воды, образуя гидроксид-ионы.

б) для восстановителя

Из ионной схемы видно, что ион SО3 2- превращается в ион SO4 2- , для этого необходимо добавить один ион О 2- , ко­торый берется из молекулы Н2O (реакция протекает в водной среде). При этом освобождаются два иона Н + .

3. Подсчитать число зарядов в правой и левой части ра­венства. Найти коэффициенты при окислителе и восстанови­теле.

Подбор коэффициентов в уравнениях овр

4.Написать электронно-ионное уравнение, учитывая найденные коэффициенты:

Сокращаем левую и правую часть равенства на 6Н20. По­лучаем окончательное ионное уравнение.

5. По ионному уравнению составить молекулярное урав­нение реакции.

6. Число атомов и ионов каждого элемента в правой и ле­вей части уравнения должно быть равно.

Пример 5. Исходя из степени окисления (п) азота, серы и марганца в соединениях NН3, HNO2, HNO3, H2S, Н2SO3, Н24, MnO2 и КМnO4, определите, какие из них могут быть только восстановителями, только окислителями и какие проявляют как окислительные, так и восстановительные свойства.

Решение. Степень окисления азота в указанных соединениях соответственно равна: -3 (низшая), +3 (промежуточная), +5 (выс­шая); n(S), соответственно, равна: -2 (низшая), +4 (промежуточная), +6 (высшая); n(Мn), соответственно, равна: + 4 (промежуточная), +7 (высшая). Отсюда: NН3, H2S — только восстановители; HNO3, H2SO4, КMnО4 — только окислители; НNО2, Н23, MnO2 — окислители и восстановители.

Пример 6. Могут ли происходить окислительно-восста­новительные реакции между следующими веществами: a) H2S и HI; б) H2S и Н23; в) Н23 и НС1O4?

а) Степень окисления в Н2S n(S) = -2; в HI n(I) = -1. Так как и сера и иод находятся в своей низшей степени окис­ления, то оба вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;

б) в H2S n(S) = -2 (низшая), в H2SO3 n(S) = +4 (промежуточная).

Следовательно, взаимодействие этих веществ возможно, при­чем, Н23 является окислителем;

в) в Н2SO3 n(s) = +4 (промежуточная); в НС1O4 n(Сl) = +7 (высшая). Взятые вещества могут взаимодействовать, Н23 в этом случае будет проявлять восстановительные свойства.

Пример 7. Составьте уравнения окислительно-восстано­вительной реакции, идущей по схеме:

Решение. Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электрон­ного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

Подбор коэффициентов в уравнениях овр

Подбор коэффициентов в уравнениях овр

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид:

Пример 8. Составьте уравнение реакции взаимодействия цинка с концентрированной серной кислотой, учитывая макси­мальное восстановление последней.

Решение. Цинк, как любой металл, проявляет только восстановительные свойства. В концентрированной серной кис­лоте окислительная функция принадлежит сере (+6). Макси­мальное восстановление серы означает, что она приобретает минимальную степень окисления. Минимальная степень окис­ления серы как p-элемента VIA-группы равна -2. Цинк как ме­талл IIВ-группы имеет постоянную степень окисления +2. Отра­жаем сказанное в электронных уравнениях:

Составляем уравнение реакции:

Подбор коэффициентов в уравнениях овр

Перед H2SO4 стоит коэффициент 5, а не 1, ибо четыре молекулы H2SO4 идут на связывание четырех ионов Zn 2+ .

📺 Видео

Как расставить коэффициенты в органических ОВР? | Екатерина СтрогановаСкачать

Как расставить коэффициенты в органических ОВР? | Екатерина Строганова

Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Как расставлять коэффициенты в химических реакциях | ОВР | Метод электронного баланса, Химия ЕГЭ, ЦТСкачать

Как расставлять коэффициенты в химических реакциях | ОВР | Метод электронного баланса, Химия ЕГЭ, ЦТ

Как расставлять коэффициенты в уравнениях реакций? #shorts #youtubeshortsСкачать

Как расставлять коэффициенты в уравнениях реакций? #shorts #youtubeshorts

8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

ОВР (Часть 1) | Метод электронного баланса | Как расставить коэффициенты в уравнении реакцииСкачать

ОВР (Часть 1) | Метод электронного баланса | Как расставить коэффициенты в уравнении реакции

Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

Быстрый способ расстановки коэффициентов в уравнениях ОВР.Скачать

Быстрый способ расстановки коэффициентов в уравнениях ОВР.
Поделиться или сохранить к себе: