По точкам графика построить уравнение

Построение графиков функций онлайн Справка
интервал:[ , ] в Пи
подпись:
интервал:[ , ] авто
подпись:

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Сервис онлайн построения графиков

Этот сервис создан в помощь школьникам и студентам в изучении математики (алгебры и геометрии) и физики и предназначен для онлайн построения графиков функций (обычных и параметрических) и графиков по точкам (графиков по значениям), а также графиков функций в полярной системе координат.

Просто введите формулу функции в поле «Графики:» и нажмите кнопку «Построить».

Почитайте в cправкe, как правильно вводить формулы функций.

Загляните в раздел примеров, наверняка, там есть графики функций, похожие на то, что нужно Вам, останется только слегка откорректировать готовые формулы функций.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Как построить график функции

Для задания области (например, 1≤x≤7 ) используйте пределы или >= .

Видео:7кл. Постройте график уравнения x+y=5Скачать

7кл. Постройте график уравнения x+y=5

Трехмерные графики функции

Чтобы создать трехмерный график достаточно, чтобы в выражении была переменная y (например, y^2-x/3 ).

  • График функции онлайн
  • График по точкам
  • Построение графика в Excel

Чтобы создать трехмерный график достаточно, чтобы в выражении была переменная y (например, y^2-x/3 ).

Чтобы построить трехмерный график в Excel , необходимо указать функцию f(x,y) , пределы по x и y и шаг сетки h .

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Принципы и способы построения графика функции

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Прикладное применение графика функции

Построить пирамиду ABCD по координатам можно здесь.

Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Построение графиков функций

По точкам графика построить уравнение

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида По точкам графика построить уравнениеобласть определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

По точкам графика построить уравнение

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

По точкам графика построить уравнение

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Видео:Построение графика квадратичной функцииСкачать

Построение графика квадратичной функции

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: По точкам графика построить уравнение

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

По точкам графика построить уравнение

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Видео:Как написать уравнения касательной и нормали | МатематикаСкачать

Как написать уравнения касательной и нормали | Математика

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции По точкам графика построить уравнение

Упростим формулу функции:

По точкам графика построить уравнениепри х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функцииПо точкам графика построить уравнение

Выделим в формуле функции целую часть:

По точкам графика построить уравнение

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции По точкам графика построить уравнение

По точкам графика построить уравнение

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

  1. По точкам графика построить уравнение
  2. По точкам графика построить уравнение
  3. По точкам графика построить уравнение

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины По точкам графика построить уравнение, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины По точкам графика построить уравнение, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

По точкам графика построить уравнение

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

xy
02
11

По точкам графика построить уравнение

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

xy
00
12

По точкам графика построить уравнение

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

По точкам графика построить уравнение

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции По точкам графика построить уравнение

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

По точкам графика построить уравнение

Задача 6. Построить графики функций:

б) По точкам графика построить уравнение

г) По точкам графика построить уравнение

д) По точкам графика построить уравнение

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) По точкам графика построить уравнение

Преобразование в одно действие типа f(x) + a.

По точкам графика построить уравнение

Сдвигаем график вверх на 1:

По точкам графика построить уравнение

б)По точкам графика построить уравнение

Преобразование в одно действие типа f(x — a).

По точкам графика построить уравнение

Сдвигаем график вправо на 1:

По точкам графика построить уравнение

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

По точкам графика построить уравнение

Сдвигаем график вправо на 1:

По точкам графика построить уравнение

Сдвигаем график вверх на 2:

По точкам графика построить уравнение

г) По точкам графика построить уравнение

Преобразование в одно действие типа По точкам графика построить уравнение

По точкам графика построить уравнение

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

По точкам графика построить уравнение

По точкам графика построить уравнение

д) По точкам графика построить уравнение

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

По точкам графика построить уравнение
По точкам графика построить уравнение
По точкам графика построить уравнение

Сжимаем график в два раза вдоль оси абсцисс:

По точкам графика построить уравнение
По точкам графика построить уравнение

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

По точкам графика построить уравнение
По точкам графика построить уравнение

Отражаем график симметрично относительно оси абсцисс:

🌟 Видео

Как определить уравнение параболы по графику?Скачать

Как определить уравнение параболы по графику?

Уравнение прямой по графику. ПримерыСкачать

Уравнение прямой по графику. Примеры

Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать

Математика без Ху!ни. Нахождение асимптот, построение графика функции.

Занятие 1. График линейной функции y=kx+bСкачать

Занятие 1. График линейной функции y=kx+b

Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

Как построить график линейной функции.Скачать

Как построить график линейной функции.

Построение параболыСкачать

Построение параболы

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурок

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Алгебра 7 класс. 3 октября. Строим график линейной функцииСкачать

Алгебра 7 класс. 3 октября. Строим график линейной функции
Поделиться или сохранить к себе: