Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Вектор перпендикулярный плоскости называется

Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

В этой статье мы сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.

Навигация по странице.

Содержание
  1. Нормальный вектор плоскости – определение, примеры, иллюстрации.
  2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.
  3. Необходимое и достаточное условие перпендикулярности двух векторов
  4. Условие перпендикулярности на координатной плоскости
  5. Нахождение вектора, перпендикулярного данному
  6. Нахождение координат вектора, перпендикулярного двум заданным векторам
  7. Нахождение вектора, перпендикулярного данному вектору, примеры и решения
  8. Необходимое и достаточное условие перпендикулярности двух векторов
  9. Условие перпендикулярности на координатной плоскости
  10. Нахождение вектора, перпендикулярного данному
  11. Нахождение координат вектора, перпендикулярного двум заданным векторам
  12. Метод координат в пространстве
  13. Вычисление координат векторов
  14. Вычисление направляющих векторов для прямых
  15. Вычисление нормальных векторов для плоскостей
  16. Координаты середины отрезка
  17. 📹 Видео

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Нормальный вектор плоскости – определение, примеры, иллюстрации.

Для хорошего усвоения материала нам потребуется хорошее представление о прямой в пространстве, представление о плоскости и определения из статьи векторы – основные определения.

Дадим определение нормального вектора плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости— нормальный вектор плоскости Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости, то вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостипри некотором ненулевом действительном значении t также является нормальным вектором плоскости Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости(смотрите статью условие коллинеарности векторов).

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Приведем пример нормального вектора плоскости.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz . Координатные векторы Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиявляются нормальными векторами плоскостей Oyz , Oxz и Oxy соответственно. Это действительно так, потому что векторы Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиненулевые и лежат на координатных прямых Ox , Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz , Oxz и Oxy соответственно.

Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.

Озвучим цель, которая преследовалась при создании этого пункта статьи: научиться находить координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz .

Общее уравнение плоскости вида Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиопределяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Рассмотрим несколько примеров.

Найдите координаты какого-либо нормального вектора плоскости Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости.

Нам дано общее уравнение плоскости, коэффициенты перед переменными x , y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости— один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости, где t — произвольное действительное число, отличное от нуля.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Плоскость задана уравнением Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Определите координаты ее направляющих векторов.

Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостив виде Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Таким образом, нормальный вектор этой плоскости имеет координаты Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости, а множество всех нормальных векторов запишется как Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Уравнение плоскости в отрезках вида Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости, как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости.

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.

Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.

Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.

Видео:2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Необходимое и достаточное условие перпендикулярности двух векторов

Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.

При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.

Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?

Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.

Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.

Скалярное произведение двух ненулевых векторов a → и b → равном нулю для выполнения равенства a → , b → = 0 достаточно для их перпендикулярности.

Пусть заданные векторы a → и b → перпендикулярны, тогда выполним доказательство равенства a ⇀ , b → = 0 .

Из определения про скалярное произведение векторов мы знаем, что оно равняется произведению длин заданных векторов на косинус угла между ними. По условию a → и b → перпендикулярны, а, значит, исходя из определения, угол между ними 90 ° . Тогда имеем a → , b → = a → · b → · cos ( a → , b → ^ ) = a → · b → · cos 90 ° = 0 .

Вторая часть доказательства

При условии, когда a ⇀ , b → = 0 доказать перпендикулярность a → и b → .

По сути доказательство является обратным предыдущему. Известно, что a → и b → ненулевые, значит, из равенства a ⇀ , b → = a → · b → · cos ( a → , b → ) ^ найдем косинус. Тогда получим cos ( a → , b → ) ^ = ( a → , b → ) a → · b → = 0 a → · b → = 0 . Так как косинус равен нулю, можем сделать вывод, что угол a → , b → ^ векторов a → и b → равен 90 ° . По определению это и есть необходимое и достаточное свойство.

Видео:Метод координат для ЕГЭ с нуля за 30 минут.Скачать

Метод координат для ЕГЭ с нуля за 30 минут.

Условие перпендикулярности на координатной плоскости

Раздел скалярного произведения в координатах демонстрирует неравенство ( a → , b → ) = a x · b x + a y · b y , справедливое для векторов с координатами a → = ( a x , a y ) и b → = ( b x , b y ) , на плоскости и ( a → , b → ) = a x · b x + a y · b y для векторов a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) в пространстве. Необходимым и достаточным условием перпендикулярности двух векторов в координатной плоскости имеет вид a x · b x + a y · b y = 0 , для трехмерного пространства a x · b x + a y · b y + a z · b z = 0 .

Применим на практике и рассмотрим на примерах.

Проверить свойство перпендикулярности двух векторов a → = ( 2 , — 3 ) , b → = ( — 6 , — 4 ) .

Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.

( a → , b → ) = a x · b x + a y · b y = 2 · ( — 6 ) + ( — 3 ) · ( — 4 ) = 0 . Условие выполнено, значит, заданные векторы перпендикулярны на плоскости.

Ответ: да, заданные векторы a → и b → перпендикулярны.

Даны координатные векторы i → , j → , k → . Проверить, могут ли векторы i → — j → и i → + 2 · j → + 2 · k → быть перпендикулярными.

Для того, чтобы вспомнить, как определяются координаты вектора, нужно прочитать статью про координаты вектора в прямоугольной системе координат. Таким образом получаем, что у заданных векторов i → — j → и i → + 2 · j → + 2 · k → имеются соответствующие координаты ( 1 , — 1 , 0 ) и ( 1 , 2 , 2 ) . Подставляем числовые значения и получаем: i → + 2 · j → + 2 · k → , i → — j → = 1 · 1 + ( — 1 ) · 2 + 0 · 2 = — 1 .

Выражение не равно нулю, ( i → + 2 · j → + 2 · k → , i → — j → ) ≠ 0 , а это означает, что векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны, так как условие не выполнилось.

Ответ: нет, векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны.

Даны векторы a → = ( 1 , 0 , — 2 ) и b → = ( λ , 5 , 1 ) . Найти значение λ , при котором данные векторы перпендикулярны.

Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим

a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · λ + 0 · 5 + ( — 2 ) · 1 = 0 ⇔ λ = 2

Ответ: векторы перпендикулярны при значении λ = 2 .

Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.

Дан треугольник А В С со сторонами А В = 8 , А С = 6 , В С = 10 см. проверить на перпендикулярность векторы A B → и A C → .

При перпендикулярности векторов A B → и A C → треугольник A B C считается прямоугольным. Тогда применим теорему Пифагора, где В С – гипотенуза треугольника. Равенство B C 2 = A B 2 + A C 2 должно выполниться. Отсюда следует, что 10 2 = 8 2 + 6 2 ⇔ 100 = 100 . Значит, А В и А С являются катетами треугольника А В С , следовательно, A B → и A C → перпендикулярны.

Видео:11 класс, 8 урок, Уравнение плоскостиСкачать

11 класс, 8 урок, Уравнение плоскости

Нахождение вектора, перпендикулярного данному

Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.

Нахождение вектора, перпендикулярного данному в плоскости.

Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Задан ненулевой вектор a → , лежащий на прямой а. Тогда заданный b → , расположенный на любой прямой, перпендикулярной прямой а, становится перпендикулярным и a → . Если вектору i → перпендикулярен вектор j → или любой из векторов λ · j → при λ равной любому действительному числу кроме нуля, то нахождение координат вектора b → , перпендикулярному a → = ( a x , a y ) , сводится к бесконечному множеству решений. Но необходимо найти координаты вектора, перпендикулярного a → = ( a x , a y ) . Для этого необходимо записать условие перпендикулярности векторов в такой форме a x · b x + a y · b y = 0 . Имеем b x и b y , являющиеся искомыми координатами перпендикулярного вектора. Когда a x ≠ 0 , значение b y является ненулевым, а b x вычислим из неравенства a x · b x + a y · b y = 0 ⇔ b x = — a y · b y a x . При a x = 0 и a y ≠ 0 присваиваем b x любое значение кроме нуля, а b y находим из выражения b y = — a x · b x a y .

Дан вектор с координатами a → = ( — 2 , 2 ) . Найти перпендикулярный данному вектор.

Обозначим искомый вектор как b → ( b x , b y ) . Найти его координаты можно из условия перпендикулярности векторов a → и b → . Тогда получим: ( a → , b → ) = a x · b x + a y · b y = — 2 · b x + 2 · b y = 0 . Присвоим b y = 1 и подставим: — 2 · b x + 2 · b y = 0 ⇔ — 2 · b x + 2 = 0 . Отсюда из формулы получим b x = — 2 — 2 = 1 2 . Значит, вектор b → = ( 1 2 , 1 ) является вектором, перпендикулярным a → .

Если ставится вопрос о трехмерном пространстве, задача решается по такому же принципу. При заданном векторе a → = ( a x , a y , a z ) существует бесконечное множество перпендикулярных векторов. Зафиксирует это на координатной трехмерной плоскости. Дана a → , лежащая на прямой a . Перпендикулярную прямой a плоскость обозначаем α . В этом случае любой ненулевой вектор b → из плоскости α перпендикулярен a → .

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Необходимо найти координаты b → , перпендикулярного ненулевому вектору a → = ( a x , a y , a z ) .

Пусть задан b → с координатами b x , b y и b z . Чтобы найти их, необходимо применить определение условия перпендикулярности двух векторов. Равенство a x · b x + a y · b y + a z · b z = 0 должно выполняться. Из условия a → — ненулевой, значит, одна из координат имеет значение не равное нулю. Предположим, что a x ≠ 0 , ( a y ≠ 0 или a z ≠ 0 ). Следовательно, имеем право разделить на эту координату все неравенство a x · b x + a y · b y + a z · b z = 0 , получим выражение b x + a y · b y + a z · b z a x = 0 ⇔ b x = — a y · b y + a z · b z a x . Присваиваем координатам b y и b x любое значение, вычисляем значение b x , исходя из формулы, b x = — a y · b y + a z · b z a x . Искомый перпендикулярный вектор будет иметь значение a → = ( a x , a y , a z ) .

Рассмотрим доказательство на примере.

Дан вектор с координатами a → = ( 1 , 2 , 3 ) . Найти вектор, перпендикулярный данному.

Обозначим искомый вектор за b → = ( b x , b y , b z ) . Исходя из условия о перпендикулярности векторов, скалярное произведение должно быть равным нулю.

a ⇀ , b ⇀ = 0 ⇔ a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · b x + 2 · b y + 3 · b z = 0 ⇔ b x = — ( 2 · b y + 3 · b z )

Если значение b y = 1 , b z = 1 , тогда b x = — 2 · b y — 3 · b z = — ( 2 · 1 + 3 · 1 ) = — 5 . Отсюда следует, что координаты вектора b → ( — 5 , 1 , 1 ) . Вектор b → является одним из перпендикулярных векторов заданному.

Ответ: b → = ( — 5 , 1 , 1 ) .

Видео:Анализ общего уравнения плоскостиСкачать

Анализ общего уравнения плоскости

Нахождение координат вектора, перпендикулярного двум заданным векторам

Нужно найти координаты вектора в трехмерном пространстве. Он перпендикулярен не коллинеаренным векторам a → ( a x , a y , a z ) и b → = ( b x , b y , b z ) . При условии коллинеарности векторов a → и b → в задаче достаточно будет найти вектор, перпендикулярный a → или b → .

При решении применяется понятие векторного произведения векторов.

Векторным произведением векторов a → и b → называют вектор, одновременно перпендикулярный и a → и b → . Для решения данной задачи применяется векторное произведение a → × b → . Для трехмерного пространства имеет вид a → × b → = a → j → k → a x a y a z b x b y b z

Разберем подробнее векторное произведение на примере задачи.

Заданы векторы b → = ( 0 , 2 , 3 ) и a → = ( 2 , 1 , 0 ) . Найти координаты любого перпендикулярного вектора данным одновременно.

Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :

a → × b → = i → j → k → 2 1 0 0 2 3 = i → · 1 · 3 + j → · 0 · 0 + k → · 2 · 2 — k → · 1 · 0 — j → · 2 · 3 — i → · 0 · 2 = 3 · i → + ( — 6 ) · j → + 4 · k →

Ответ: ( 3 , — 6 , 4 ) координаты вектора, одновременно перпендикулярного заданным a → и b → .

1. Различные уравнения плоскости.

а). Уравнение плоскости, заданной точкой Мо и вектором нормали.

При аксиоматическом построении геометрии плоскость считается

основным неопределяемым понятием, основные свойства которой определяются аксиомами и их свойствами.

В аналитической геометрии основным методом изучения свойств геометрических фигур является метод координат, основной особенностью которого является возможность каждой геометрической фигуре поставить в соответствие уравнение или неравенство и изучать свойство исследуемой фигуры на основе следствий, вытекающих из анализа полученного уравнения.

Определение. Вектор, перпендикулярный плоскости, называется вектором нормали плоскости. (Рис.9)

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Поставим перед собой задачу получить уравнение плоскости в пространстве, заданной точкой и вектором нормали.

Введём пространстве прямоугольную систему координат и рассмотрим плоскость, заданную точкой Мооо) и вектором Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиперпендикулярным плоскости α. Приведённые данные определяют положение плоскости α в пространстве единственным образом.

Пусть точка М(x;y;z) − произвольная точка плоскости α. Очевидно, что точка М(x,y,z) Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскоститогда и только тогда, когда векторы Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостии Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостивзаимно перпендикулярны. => Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Координаты вектора Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостии вектора Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости( Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости) известны, =>

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Уравнение (6) называется уравнением плоскости, заданной точкой Мооо) и вектором нормали Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости.

б). Условие параллельности вектора плоскости.

Теорема I. Вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостипараллелен плоскости α

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости.

Пусть вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостипараллелен плоскости α. (Рис.7) Тогда

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостии Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиперпендикулярны => Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости
Рис.10.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Пусть дан вектор даны вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостии плоскость α своим уравнением Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Кроме того пусть для координат вектора даны вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостивыполнено условие Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. Возьмем в плоскости α некоторую точку А(хАА;zА) принадлежащую плоскости α. Тогда координаты точки А удовлетворяют уравнению плоскости α, то есть

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. (8)

Отложим от точки А вектор, равный вектору Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостии пусть его концом будет точка В(xB;yB;zB). Очевидно, что для координат вектора Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостисправедливы соотношения: р1= xB−xA; : р2= yB−yA; : р3= zB−zA . Подставив эти выражения для координат вектора даны вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостив (9), получаем Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости. (9)

Сложив уравнение (8) с уравнением (9), получим

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости=>

Точка В принадлежит плоскости α, то есть вектор Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости║ α. Ч.т.д.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8829 — Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости| 7541 — Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскостиили читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Видео:Видеоурок "Уравнение плоскости в отрезках"Скачать

Видеоурок "Уравнение плоскости в отрезках"

Нахождение вектора, перпендикулярного данному вектору, примеры и решения

Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.

Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Необходимое и достаточное условие перпендикулярности двух векторов

Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.

При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.

Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?

Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.

Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.

Скалярное произведение двух ненулевых векторов a → и b → равном нулю для выполнения равенства a → , b → = 0 достаточно для их перпендикулярности.

Пусть заданные векторы a → и b → перпендикулярны, тогда выполним доказательство равенства a ⇀ , b → = 0 .

Из определения про скалярное произведение векторов мы знаем, что оно равняется произведению длин заданных векторов на косинус угла между ними. По условию a → и b → перпендикулярны, а, значит, исходя из определения, угол между ними 90 ° . Тогда имеем a → , b → = a → · b → · cos ( a → , b → ^ ) = a → · b → · cos 90 ° = 0 .

Вторая часть доказательства

При условии, когда a ⇀ , b → = 0 доказать перпендикулярность a → и b → .

По сути доказательство является обратным предыдущему. Известно, что a → и b → ненулевые, значит, из равенства a ⇀ , b → = a → · b → · cos ( a → , b → ) ^ найдем косинус. Тогда получим cos ( a → , b → ) ^ = ( a → , b → ) a → · b → = 0 a → · b → = 0 . Так как косинус равен нулю, можем сделать вывод, что угол a → , b → ^ векторов a → и b → равен 90 ° . По определению это и есть необходимое и достаточное свойство.

Видео:Векторный метод в стереометрии. Задача 14 профильный ЕГЭСкачать

Векторный метод в стереометрии. Задача 14 профильный ЕГЭ

Условие перпендикулярности на координатной плоскости

Раздел скалярного произведения в координатах демонстрирует неравенство ( a → , b → ) = a x · b x + a y · b y , справедливое для векторов с координатами a → = ( a x , a y ) и b → = ( b x , b y ) , на плоскости и ( a → , b → ) = a x · b x + a y · b y для векторов a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) в пространстве. Необходимым и достаточным условием перпендикулярности двух векторов в координатной плоскости имеет вид a x · b x + a y · b y = 0 , для трехмерного пространства a x · b x + a y · b y + a z · b z = 0 .

Применим на практике и рассмотрим на примерах.

Проверить свойство перпендикулярности двух векторов a → = ( 2 , — 3 ) , b → = ( — 6 , — 4 ) .

Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.

( a → , b → ) = a x · b x + a y · b y = 2 · ( — 6 ) + ( — 3 ) · ( — 4 ) = 0 . Условие выполнено, значит, заданные векторы перпендикулярны на плоскости.

Ответ: да, заданные векторы a → и b → перпендикулярны.

Даны координатные векторы i → , j → , k → . Проверить, могут ли векторы i → — j → и i → + 2 · j → + 2 · k → быть перпендикулярными.

Для того, чтобы вспомнить, как определяются координаты вектора, нужно прочитать статью про координаты вектора в прямоугольной системе координат. Таким образом получаем, что у заданных векторов i → — j → и i → + 2 · j → + 2 · k → имеются соответствующие координаты ( 1 , — 1 , 0 ) и ( 1 , 2 , 2 ) . Подставляем числовые значения и получаем: i → + 2 · j → + 2 · k → , i → — j → = 1 · 1 + ( — 1 ) · 2 + 0 · 2 = — 1 .

Выражение не равно нулю, ( i → + 2 · j → + 2 · k → , i → — j → ) ≠ 0 , а это означает, что векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны, так как условие не выполнилось.

Ответ: нет, векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны.

Даны векторы a → = ( 1 , 0 , — 2 ) и b → = ( λ , 5 , 1 ) . Найти значение λ , при котором данные векторы перпендикулярны.

Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим

a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · λ + 0 · 5 + ( — 2 ) · 1 = 0 ⇔ λ = 2

Ответ: векторы перпендикулярны при значении λ = 2 .

Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.

Дан треугольник А В С со сторонами А В = 8 , А С = 6 , В С = 10 см. проверить на перпендикулярность векторы A B → и A C → .

При перпендикулярности векторов A B → и A C → треугольник A B C считается прямоугольным. Тогда применим теорему Пифагора, где В С – гипотенуза треугольника. Равенство B C 2 = A B 2 + A C 2 должно выполниться. Отсюда следует, что 10 2 = 8 2 + 6 2 ⇔ 100 = 100 . Значит, А В и А С являются катетами треугольника А В С , следовательно, A B → и A C → перпендикулярны.

Видео:Плоскость в пространствеСкачать

Плоскость в пространстве

Нахождение вектора, перпендикулярного данному

Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.

Нахождение вектора, перпендикулярного данному в плоскости.

Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Задан ненулевой вектор a → , лежащий на прямой а. Тогда заданный b → , расположенный на любой прямой, перпендикулярной прямой а, становится перпендикулярным и a → . Если вектору i → перпендикулярен вектор j → или любой из векторов λ · j → при λ равной любому действительному числу кроме нуля, то нахождение координат вектора b → , перпендикулярному a → = ( a x , a y ) , сводится к бесконечному множеству решений. Но необходимо найти координаты вектора, перпендикулярного a → = ( a x , a y ) . Для этого необходимо записать условие перпендикулярности векторов в такой форме a x · b x + a y · b y = 0 . Имеем b x и b y , являющиеся искомыми координатами перпендикулярного вектора. Когда a x ≠ 0 , значение b y является ненулевым, а b x вычислим из неравенства a x · b x + a y · b y = 0 ⇔ b x = — a y · b y a x . При a x = 0 и a y ≠ 0 присваиваем b x любое значение кроме нуля, а b y находим из выражения b y = — a x · b x a y .

Дан вектор с координатами a → = ( — 2 , 2 ) . Найти перпендикулярный данному вектор.

Обозначим искомый вектор как b → ( b x , b y ) . Найти его координаты можно из условия перпендикулярности векторов a → и b → . Тогда получим: ( a → , b → ) = a x · b x + a y · b y = — 2 · b x + 2 · b y = 0 . Присвоим b y = 1 и подставим: — 2 · b x + 2 · b y = 0 ⇔ — 2 · b x + 2 = 0 . Отсюда из формулы получим b x = — 2 — 2 = 1 2 . Значит, вектор b → = ( 1 2 , 1 ) является вектором, перпендикулярным a → .

Если ставится вопрос о трехмерном пространстве, задача решается по такому же принципу. При заданном векторе a → = ( a x , a y , a z ) существует бесконечное множество перпендикулярных векторов. Зафиксирует это на координатной трехмерной плоскости. Дана a → , лежащая на прямой a . Перпендикулярную прямой a плоскость обозначаем α . В этом случае любой ненулевой вектор b → из плоскости α перпендикулярен a → .

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

Необходимо найти координаты b → , перпендикулярного ненулевому вектору a → = ( a x , a y , a z ) .

Пусть задан b → с координатами b x , b y и b z . Чтобы найти их, необходимо применить определение условия перпендикулярности двух векторов. Равенство a x · b x + a y · b y + a z · b z = 0 должно выполняться. Из условия a → — ненулевой, значит, одна из координат имеет значение не равное нулю. Предположим, что a x ≠ 0 , ( a y ≠ 0 или a z ≠ 0 ). Следовательно, имеем право разделить на эту координату все неравенство a x · b x + a y · b y + a z · b z = 0 , получим выражение b x + a y · b y + a z · b z a x = 0 ⇔ b x = — a y · b y + a z · b z a x . Присваиваем координатам b y и b x любое значение, вычисляем значение b x , исходя из формулы, b x = — a y · b y + a z · b z a x . Искомый перпендикулярный вектор будет иметь значение a → = ( a x , a y , a z ) .

Рассмотрим доказательство на примере.

Дан вектор с координатами a → = ( 1 , 2 , 3 ) . Найти вектор, перпендикулярный данному.

Обозначим искомый вектор за b → = ( b x , b y , b z ) . Исходя из условия о перпендикулярности векторов, скалярное произведение должно быть равным нулю.

a ⇀ , b ⇀ = 0 ⇔ a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · b x + 2 · b y + 3 · b z = 0 ⇔ b x = — ( 2 · b y + 3 · b z )

Если значение b y = 1 , b z = 1 , тогда b x = — 2 · b y — 3 · b z = — ( 2 · 1 + 3 · 1 ) = — 5 . Отсюда следует, что координаты вектора b → ( — 5 , 1 , 1 ) . Вектор b → является одним из перпендикулярных векторов заданному.

Ответ: b → = ( — 5 , 1 , 1 ) .

Видео:Прямоугольная система координат в пространстве. Координаты вектора. Видеоурок по геометрии 11 классСкачать

Прямоугольная система координат в пространстве. Координаты вектора. Видеоурок по геометрии 11 класс

Нахождение координат вектора, перпендикулярного двум заданным векторам

Нужно найти координаты вектора в трехмерном пространстве. Он перпендикулярен не коллинеаренным векторам a → ( a x , a y , a z ) и b → = ( b x , b y , b z ) . При условии коллинеарности векторов a → и b → в задаче достаточно будет найти вектор, перпендикулярный a → или b → .

При решении применяется понятие векторного произведения векторов.

Векторным произведением векторов a → и b → называют вектор, одновременно перпендикулярный и a → и b → . Для решения данной задачи применяется векторное произведение a → × b → . Для трехмерного пространства имеет вид a → × b → = a → j → k → a x a y a z b x b y b z

Разберем подробнее векторное произведение на примере задачи.

Заданы векторы b → = ( 0 , 2 , 3 ) и a → = ( 2 , 1 , 0 ) . Найти координаты любого перпендикулярного вектора данным одновременно.

Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :

a → × b → = i → j → k → 2 1 0 0 2 3 = i → · 1 · 3 + j → · 0 · 0 + k → · 2 · 2 — k → · 1 · 0 — j → · 2 · 3 — i → · 0 · 2 = 3 · i → + ( — 6 ) · j → + 4 · k →

Ответ: ( 3 , — 6 , 4 ) координаты вектора, одновременно перпендикулярного заданным a → и b → .

Видео:5. Нормальное уравнение плоскости выводСкачать

5. Нормальное уравнение плоскости вывод

Метод координат в пространстве

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

Главная формула — косинус угла φ между векторами a = (x1; y1; z1) и b = (x2; y2; z2):

Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

  • Уравнение плоскости в трехмерном пространстве: Ax + By + Cz + D = 0, где A, B, C и D — действительные числа, причем, если плоскость проходит через начало координат, D = 0. А если не проходит, то D = 1.
  • Вектор, перпендикулярный к плоскости Ax + By + Cz + D = 0, имеет координаты: n = (A; B; C).
  • На первый взгляд, выглядит угрожающе, но достаточно немного практики — и все будет работать великолепно.

    Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

    Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

    Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат — точку (0; 0; 0) — то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

    Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
    A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

    Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
    A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
    A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

    Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

    Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

    Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!

    Видео:Геометрия 11 класс (Урок№3 - Координатный метод решения задач.)Скачать

    Геометрия 11 класс (Урок№3 - Координатный метод решения задач.)

    Вычисление координат векторов

    А что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора.

    Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

    Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

    Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

    Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
    AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

    Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем:
    AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

    Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
    BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

    Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

    Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

    Видео:3 серия "Параметрическое уравнение плоскости" из курса видеолекций "Метод координат"Скачать

    3 серия "Параметрическое уравнение плоскости" из курса видеолекций "Метод координат"

    Вычисление направляющих векторов для прямых

    Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

    Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую.

    Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый для прямой:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Зачем нужен этот вектор? Дело в том, что — это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

    Задача. В кубе ABCDA1B1C1D1 проведены прямые AC и BD1. Найдите координаты направляющих векторов этих прямых.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1.

    Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) — это и есть направляющий вектор.

    Теперь разберемся с прямой BD1. На ней также есть две точки: B = (1; 0; 0) и D1 = (0; 1; 1). Получаем направляющий вектор BD1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

    Ответ: AC = (1; 1; 0); BD1 = (− 1; 1; 1)

    Задача. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, проведены прямые AB1 и AC1. Найдите координаты направляющих векторов этих прямых.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA1, ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

    Для начала разберемся с прямой AB1. Тут все просто: у нас есть точки A = (0; 0; 0) и B1 = (1; 0; 1). Получаем направляющий вектор AB1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

    Теперь найдем направляющий вектор для AC1. Все то же самое — единственное отличие в том, что у точки C1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

    Видео:Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.Скачать

    Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.

    Вычисление нормальных векторов для плоскостей

    Нормальные векторы — это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости — это вектор, перпендикулярный данной плоскости.

    Другими словами, — это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение — правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом — хоть прямой, хоть вектором.

    Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D — некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

    Итак, плоскость тоже можно успешно заменить вектором — той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно — и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

    Задача. В кубе ABCDA1B1C1D1 проведено сечение A1BC1. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A1, B и C1, то координаты этих точек обращают уравнение плоскости в верное числовое равенство.

    Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
    A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

    Аналогично, для точек B = (1; 0; 0) и C1 = (1; 1; 1) получим уравнения:
    A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
    A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

    Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
    B = − 1 − A − C = − 1 + 1 + 1 = 1.

    Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

    Задача. В кубе ABCDA1B1C1D1 проведено сечение AA1C1C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

    Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
    A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

    Аналогично, для точки C = (1; 1; 0) получим уравнение:
    A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

    Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

    Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 — без ущерба для общности решения и правильности ответа.

    Видео:Уравнение плоскости. 11 класс.Скачать

    Уравнение плоскости. 11 класс.

    Координаты середины отрезка

    Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

    Итак, пусть отрезок задан своими концами — точками A = (xa; ya; za) и B = (xb; yb; zb). Тогда координаты середины отрезка — обозначим ее точкой H — можно найти по формуле:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Другими словами, координаты середины отрезка — это среднее арифметическое координат его концов.

    Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Точка K — середина ребра A1B1. Найдите координаты этой точки.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Поскольку точка K — середина отрезка A1B1, ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A1 = (0; 0; 1) и B1 = (1; 0; 1). Теперь найдем координаты точки K:

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A1B1C1D1.

    Плоскость задана уравнением отметьте вектор перпендикулярный этой плоскости

    Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A1L = C1L, т.е. точка L — это середина отрезка A1C1. Но A1 = (0; 0; 1), C1 = (1; 1; 1), поэтому имеем:

    📹 Видео

    Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

    Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой

    10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскостиСкачать

    10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскости

    Координаты вектора в пространстве. 11 класс.Скачать

    Координаты вектора  в пространстве. 11 класс.

    Прямоугольная система координат на плоскости.Скачать

    Прямоугольная система координат на плоскости.
    Поделиться или сохранить к себе: