Площадь поверхности вращения кривой заданной параметрическими уравнениями

Как найти площадь поверхности вращения с помощью интеграла

Прежде чем перейти к формулам площади поверхности вращения, дадим краткую формулировку самой поверхности вращения. Поверхность вращения, или, что то же самое — поверхность тела вращения — пространственная фигура, образованная вращением отрезка AB кривой вокруг оси Ox (рисунок ниже).

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Представим себе криволинейную трапецию, ограниченную сверху упомянутым отрезком кривой. Тело, образованное вращением этой трапеции вокруг то же оси Ox, и есть тело вращения. А площадь поверхности вращения или поверхности тела вращения — это его внешняя оболочка, не считая кругов, образованных вращением вокруг оси прямых x = a и x = b .

Заметим, что тело вращения и соответственно его поверхность могут быть образованы также вращением фигуры не вокруг оси Ox, а вокруг оси Oy.

Видео:Площадь поверхности вращения.Скачать

Площадь поверхности вращения.

Вычисление площади поверхности вращения, заданной в прямоугольных координатах

Пусть в прямоугольных координатах на плоскости уравнением y = f(x) задана кривая, вращением которой вокруг координатной оси образовано тело вращения.

Формула для вычисления площади поверхности вращения следующая:

Площадь поверхности вращения кривой заданной параметрическими уравнениями(1).

Пример 1. Найти площадь поверхности параболоида, образованную вращением вокруг оси Ox дуги параболы Площадь поверхности вращения кривой заданной параметрическими уравнениями, соответствующей изменению x от x = 0 до x = a .

Решение. Выразим явно функцию, которая задаёт дугу параболы:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Найдём производную этой функции:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Прежде чем воспользоваться формулу для нахождения площади поверхности вращения, напишем ту часть её подынтегрального выражения, которая представляет собой корень и подставим туда найденную только что производную:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Далее по формуле (1) находим:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Ответ: длина дуги кривой равна

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Пример 2. Найти площадь поверхности, образуемой вращением вокруг оси Ox астроиды Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Решение. Достаточно вычислить площадь поверхности, получающейся от вращения одной ветви астроиды, расположенной в первой четверти, и умножить её на 2. Из уравнения астроиды выразим явно функцию, которую нам нужно будет подставить в формулу для нахождения площади повержности вращения:

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Производим интегрирование от 0 до a:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Ответ: площадь поверхности вращения равна Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Видео:Площадь эллипсоида + вывод формулы площади поверхности вращенияСкачать

Площадь эллипсоида + вывод формулы площади поверхности вращения

Вычисление площади поверхности вращения, заданной параметрически

Рассмотрим случай, когда кривая, образующая поверхность вращения, задана параметрическими уравнениями

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Тогда площадь поверхности вращения вычисляется по формуле

Площадь поверхности вращения кривой заданной параметрическими уравнениями(2).

Пример 3. Найти площадь поверхности вращения, образованной вращением вокруг оси Oy фигуры, ограниченной циклоидой и прямой y = a . Циклоида задана параметрическими уравнениями

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Решение. Найдём точки пересечения циклоиды и прямой. Приравнивая уравнение циклоиды Площадь поверхности вращения кривой заданной параметрическими уравнениямии уравнение прямой y = a , найдём

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Из этого следует, что границы интегрирования соответствуют

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Теперь можем применить формулу (2). Найдём производные:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Запишем подкоренное выражение в формуле, подставляя найденные производные:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Найдём корень из этого выражения:

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Подставим найденное в формулу (2):

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Площадь поверхности вращения кривой заданной параметрическими уравнениями

И, наконец, находим

Площадь поверхности вращения кривой заданной параметрическими уравнениями

В преобразовании выражений были использованы тригонометрические формулы

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Ответ: площадь поверхности вращения равна Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Видео:Площадь поверхности вращенияСкачать

Площадь поверхности вращения

Вычисление площади поверхности вращения, заданной в полярных координатах

Пусть кривая, вращением которой образована поверхность, задана в полярных координатах:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Площадь поверхности вращения вычисляется по формуле:

Площадь поверхности вращения кривой заданной параметрическими уравнениями(3).

Пример 4. Найти площадь поверхности, образованной вращением лемнискаты Площадь поверхности вращения кривой заданной параметрическими уравнениямивокруг полярной оси.

Решение. Действительные значения для ρ получаются при Площадь поверхности вращения кривой заданной параметрическими уравнениями, то есть при Площадь поверхности вращения кривой заданной параметрическими уравнениями(правая ветвь лемнискаты) или при Площадь поверхности вращения кривой заданной параметрическими уравнениями(левая ветвь лемнискаты).

Решение. Дифференциал корня из формулы площади поверхности вращения равен:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

В свою очередь произведение функции, которой задана лемниската, на синус угла равно

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Поэтому площадь поверхности вращения найдём следующим образом:

Площадь поверхности вращения кривой заданной параметрическими уравнениями.

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Вычисление площади поверхности вращения и разбор задач.Скачать

Вычисление площади поверхности вращения и разбор задач.

Вычисление площади фигуры, ограниченной параметрически заданной кривой

Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f ( x ) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.

После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.

Видео:§64 Поверхности вращенияСкачать

§64 Поверхности вращения

Основная формула для вычисления

Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ ( t ) y = ψ ( t ) , а функции x = φ ( t ) и y = ψ ( t ) являются непрерывными на интервале α ; β , α β , x = φ ( t ) будет непрерывно возрастать на нем и φ ( α ) = a , φ ( β ) = b .

Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S ( G ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t .

Мы вывели ее из формулы площади криволинейной трапеции S ( G ) = ∫ a b f ( x ) d x методом подстановки x = φ ( t ) y = ψ ( t ) :

S ( G ) = ∫ a b f ( x ) d x = ∫ α β ψ ( t ) d ( φ ( t ) ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t

Учитывая монотонное убывание функции x = φ ( t ) на интервале β ; α , β α , нужная формула принимает вид S ( G ) = — ∫ β α ψ ( t ) · φ ‘ ( t ) d t .

Если функция x = φ ( t ) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.

Видео:Нахождение площади поверхности вращения телаСкачать

Нахождение площади поверхности вращения тела

Решение задач на вычисление площади фигуры, которая ограничена параметрически заданной кривой

В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.

Условие: найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .

Решение

У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.

Вот ход наших вычислений:

x = φ ( t ) = 2 cos t y = ψ ( t ) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z

При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ ( t ) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:

— ∫ 0 π 2 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 ( 1 — cos ( 2 t ) d t = = 3 · t — sin ( 2 t ) 2 0 π 2 = 3 · π 2 — sin 2 · π 2 2 — 0 — sin 2 · 0 2 = 3 π 2

Значит, площадь фигуры, заданной исходной кривой, будет равна S ( G ) = 4 · 3 π 2 = 6 π .

Ответ: S ( G ) = 6 π

Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = — 2 ; 2 . В этом случае у нас бы получилось:

φ ( α ) = a ⇔ 2 cos α = — 2 ⇔ α = π + π k , k ∈ Z , φ ( β ) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z

Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ ( t ) = 2 cos t на этом интервале будет монотонно убывать.

После этого вычисляем площадь половины эллипса:

— ∫ 0 π 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π ( 1 — cos ( 2 t ) d t = = 3 · t — sin ( 2 t ) 2 0 π = 3 · π — sin 2 · π 2 — 0 — sin 2 · 0 2 = 3 π

Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.

Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .

Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R : S к р у г а = πR 2 .

Разберем еще одну задачу.

Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .

Решение

Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .

Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.

У нас x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t .

Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = ( φ ( t 0 ) ; ψ ( t 0 ) ) .

Составим таблицу итоговых значений:

Площадь поверхности вращения кривой заданной параметрическими уравнениями
t 00π 8π 43 π 8π 25 π 83 π 47 π 8π
x 0 = φ ( t 0 )32 . 361 . 060 . 160— 0 . 16— 1 . 06— 2 . 36— 3
y 0 = ψ ( t 0 )00 . 110 . 701 . 5721 . 570 . 700 . 110
t 09 π 85 π 411 π 83 π 213 π 87 π 415 π 82 π
x 0 = φ ( t 0 )— 2 . 36— 1 . 06— 0 . 1600 . 161 . 062 . 363
y 0 = ψ ( t 0 )— 0 . 11— 0 . 70— 1 . 57— 2— 1 . 57— 0 . 70— 0 . 110

После этого отметим нужные точки на плоскости и соединим их одной линией.

Площадь поверхности вращения кривой заданной параметрическими уравнениями

Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3 :

φ ( α ) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ ( β ) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z

Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ ( t ) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:

— ∫ 0 π 2 2 sin 3 t · 3 cos 3 t ‘ d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · ( 1 — sin 2 t ) d t = 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t

У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n ( x ) = — cos x · sin n — 1 ( x ) n + n — 1 n J n — 2 ( x ) , где J n ( x ) = ∫ sin n x d x .

∫ sin 4 t d t = — cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = — cos t · sin 3 t 4 + 3 4 — cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = — cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = — cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96

Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t = 18 3 π 16 — 15 π 96 = 9 π 16 .

Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .

Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .

🔥 Видео

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

Вычисление площади поверхности вращенияСкачать

Вычисление площади поверхности вращения

Нахождение площади поверхности вращения телаСкачать

Нахождение площади поверхности вращения тела

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать

14. Что такое параметрически заданная функция, производная параметрически заданной функции.

1712. Площадь поверхности вращения.Скачать

1712. Площадь поверхности вращения.

Вычисление площадей и объемов с помощью определённого интегралаСкачать

Вычисление площадей и объемов с помощью определённого интеграла

Интегралы №13 Объем тела вращенияСкачать

Интегралы №13 Объем тела вращения

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)

Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 1.

Площадь боковой поверхности и объём тела вращенияСкачать

Площадь боковой поверхности и объём тела вращения

Объем тела вращенияСкачать

Объем тела вращения
Поделиться или сохранить к себе: