Уравнения в начальных классах рассматриваются как верные равенства, решение уравнения сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение.
Решить уравнение – значит найти число (значение переменной), при котором равенство будет верным. Это число называют корнем уравнения.
Термин «решение» употребляется в двух смыслах: 1) обозначает последовательность тех операций, которые учащиеся выполняют, решая уравнение; 2) обозначает число (корень) при подстановке которого в уравнение оно обращаетс в верное равенство.
В практике соврем. Нач.шк. реализуются два подхода к обучению.
1. Сторонники первого подхода считают, что познакомить с уравнениями и способами их решения надо как можно раньше. Обоснование: дети смогут овладеть математической терминологией и способами действий в процессе решения уравнений. Чем раньше они начнут их решать, тем больше времени смогут упражняться в овладении способами решения.
2. Сторонники второго подхода предлагают приступить к решению уравнений только после того, как дети усвоят взаимосвязь между компонентами и результатами АД, овладеют необходимой терминологией и смогут осознанно формулировать правила (способы действий), которые лежат в основе арифметического способа решения уравнений.
Аргументом в данном курсе на более позднее решение уравнений является нацеленность курса на развитие мышления младших школьников в процессе усвоения программного материала. А поскольку эффективность мышления рассматривается психологами как результат системы знаний, когда разные сведения постоянно сопоставляются друг с другом в самых разных отношениях и аспектах, по-разному обобщаются и дифференцируются, входят разные цепочки причинно-следственных связей, то прежде всего, как считают авторы, необходимо понимание школьником изучаемых вопросов и осознание взаимосвязи между ними.
На подготовительном этапе дети учатся решать примеры «с окошками». В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным м.б. не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое).
Знакомство с уравнением происходит при решении задачи с отвлеченными числами. Н-р: К неизвестному числу прибавили 3 и получили 8. Найти неизвестное число. По данным задачи составляется пример с неизвестным числом ( + 3 =8). Затем учитель пояснет, что в математике принято обозначать неизвестное число латинскими буквами (н-р Х (икс)). Предлагается записать пример с заменой неизвестного буквой. Ставиться цель научиться решать такие примеры. Решение основывается на знании состава числа и использовании наглядных пособий (кружки к примеру). Аналогично еще неск. примеров. После чего учитель поясняет что такие примеры называются уравнениями и, что найти неизвестное число – значит решить уравнение. Определение уравнения и корня уравнения не дается в нач. кл.
С первых же шагов обучения решению уравнений приучают детей к тому, чтобы они выполняли проверку: найденное число подставляли в выражение, вычисляли его значение и сравнивали с тем значением, которое дано в уравнении.
В начальной школе рассматриваются два способа решения уравнения:1. Способ подбора. Подбирается подходящее значение неизвестного числа из заданных значений, либо произвольного множества чисел. При подстановке данного числа в уравнение, оно должно превращать его в верное равенство.
При подборе необходимо обращать внимание на то, с какого числа целесообразно начинать подбор.
Накопленный опыт у школьников при решении уравнений позволяет им сократить количество подборов, что способствует углублению осознанности.
36+х+х+х=35 .Очевидно, что неизвестное м. принимать только нулевое значение.
78-х-х=76. Очевидно, что х = 1, поскольку 78-1-1=76.
2. Способ, опирающийся на взаимосвязь компонентов действий. Используются правила взаимосвязи компонентов действий. Трудность использования данных правил заключается в том, что многие дети путают правила взаимосвязи компонентов действий и названия компонентов (необх.Знать 6 праил и название 10 компонентов).
9+х=14. Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое. Значит х = 14-9, х=5.
7-х=2. Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность. Значит х=7-2, х=5.
Для решения уравнений данным способом исп-ся правила и памятку. 1)Прочитай уравнение. 2) Назови, что известно в данном уравнении, а что неизвестно. 3) Вспомни правило, как найти неизвестное число. 4) Найди неизвестное число, выполнив АД 5) Сделай проверку. 6) Назови, чему равно неизвестное число.
Проверка: 1. подставь найденное значение неизвестного в уравнение. 2. вычисли значение левой части уравнения. 3. сравни значение левой и правой части уравнения.
Для уравнений со скобками вида (6+х)-5=38 исп-ся правило взаимосвязи компонентов действий. Левую часть уравнения рассматривают сначала как разность, считая выражение в скобках единым неизвестным компонентом. Этот единый неизв. комп. – уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое и т.д.
Ряд альтернативных учебников математики для нач.кл. практикуют знакомство детей с более сложными уравнениями (Аргинская, Петерсон), для решения которых правила взаимосвязи компонентов действий рекомендуется применять многократно.
Видео:Как сделать урок математики интересным? Урок математики в начальной школе. Школа молодого учителяСкачать
Решение уравнений в начальных классах
Ключевые слова: математика
«Овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи, измерения, пересчета, прикидки и оценки, наглядного представления данных и процессов, записи и выполнения алгоритмов» — из ФГОС НОО Предметные результаты освоения основной образовательной программы начального общего образования.
Уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения, анализа и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие основ логического мышления, которая позволила бы детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания. Математика именно тот предмет, где можно в большой степени это реализовывать.
В этой статье хочу рассмотреть уравнение как один из видов упражнений, направленных на развитие логического мышления, и использования алгоритмов при его решении.
Уравнения в начальных классах рассматриваются как верные равенства. Решение его сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение. Решить уравнение — значит найти число (значение переменной), при котором равенство будет верным.
В первую очередь, уравнения — очень мощный и наиболее универсальный инструмент для решения вычислительных задач. Самых разных.
- В школе, как правило, работают с текстовыми задачами. Это задачи на движение, на работу, на проценты и многие-многие другие. Однако применение уравнений не ограничивается одними лишь школьными задачками.
- Без умения составлять и решать уравнения не решить ни одной сколь-нибудь серьёзной научной задачи — физической, инженерной ли экономической. Например, рассчитать, куда попадёт ракета. Или ответить на вопрос, выдержит или не выдержит нагрузку какая-нибудь ответственная конструкция (лифт, мост…). Или спрогнозировать погоду, рост (или падение) цен или доходов.
- В повседневной жизни без решения уравнений тоже не обойтись. Например, если вы строите дом, то вычисляете расстояния и углы. Если покупаете квартиру в ипотеку, подсчитываете размер кредита так, чтобы он вписался в Ваш бюджет. Или выбрать самую выгодную банковскую карту, просчитать литры краски для ремонта, уложить асфальт… Чаще всего в повседневной жизни встречаются задачи оптимизации: проехать за минимальные время, получить наибольший доход от своих вложений, закупиться материалами по наименьшей цене и т.п.
В общем, уравнение — ключевая фигура в решении самых разнообразных вычислительных задач.
Во-вторых, знания, умения и навыки, приобретенные школьниками при решении уравнений в начальной школе, помогут им в изучении математических дисциплин в старших классах и будут способствовать скорейшему усвоению нового материала. Обучение решению уравнений способствует развитию мышления у школьников, которое так необходимо не только при изучении стереометрии и геометрии в целом, но и в обыденной жизни.
В-третьих, можно так же отметить, что обучение навыкам решения уравнений в начальной школе является своевременным и необходимым, так как именно в этом возрасте учащиеся лучше усваивают полученную от преподавателя информацию и с раннего возраста начинают понимать основные принципы и методики решения более сложных задач.
Методика изучения уравнений
I. Подготовительный
Изучать уравнения дети начинают уже с первого класса, используя в помощь различные фигуры или предметы.
Следующие действия, к которым переходят учащиеся, связаны с нахождением числа в «окошке».
1. Какие записи верны?
Как изменить результат, чтобы записи стали верными?
2. Почитай выражение: 15 — в. Найди значение выражения, если в = 3, 4, 10, 11, 16.
3. Среди чисел, записанных справа, подчеркните то число, при подстановке которого в окошко, получится верное равенство.
- 3+ ___ = 9 4, 5, 6, 7
- ___ — 2 = 4 1, 2, 3, 4, 5, 6
В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых/уменьшаемое/вычитаемое.
На этом этапе я объясняю детям, что такое часть и целое. Кстати эти понятия помогут в решении не только уравнений, но и задач. Давайте более подробно остановимся на том, как же объяснить ребёнку, что такое часть и целое. Нам важно чтобы ребёнок понимал часть не только как отдельный кусок чего-то целого, но и в значении множества и подмножества. Сами эти термины будут использоваться только в 4-5 классе, но осознать суть этих понятий вполне способен и первоклассник, если объяснять на конкретных, доступных примерах, используя действия с предметами.
Сделать это очень просто.
Например, положите перед ребёнком 4 кружка красного цвета и 3 кружка синего цвета. Кружки должны быть одинакового размера и отличаться только цветом. Это обязательное условие. Предметы должны отличаться только одним признаком. Спросите, как можно назвать все эти фигуры. Всё это кружки. Чем они отличаются? Разложи кружки на группы. Какие группы у тебя получились?
Все кружки — это целое. Целое можно разделить на части. На какие части ты разделил все кружки? (На красные кружки и синие кружки). Назови что здесь целое, а что часть — это главный вопрос упражнения.
Возьмите одинаковые по размеру кружки 3-х цветов и повторите упражнение. Затем возьмите кружки одного цвета двух или трёх размеров и повторите задание. Помните, что основная цель подобных упражнений — чёткое понимание ребёнком таких понятий как целое и части. Предметы для выполнения таких заданий должны быть самые разнообразные: пуговицы одинакового размера, но разные по цвету или по форме, причём, обязательно должны быть группы полностью одинаковых пуговиц. Чайные, десертные и столовые ложки, блюдца, тарелки и чашки — посуда и так далее. Попутно при выполнении этих упражнений закрепите классификацию предметов и повторите слова-обобщения и дифференциацию предметов (одежда и обувь, мебель и бытовые приборы, пассажирский и грузовой транспорт, овощи, фрукты и ягоды и т.д.).
Нужно будет научить ребёнка отвечать на вопросы:
- Как, одним словом можно все эти предметы правильно назвать?
- На какие части можно разделить эти предметы?
- Как назовём целое? Как назовём часть? Или что здесь целое, а что часть?
Как только вы заметите, что ребёнок свободно различает и называет целое и части, начинайте при помощи тех же предметов складывать части и вычитать часть из целого. Теперь основной целью обучения является понимание, и запоминание двух основных правил, на основе которых можно решать любые задачи и уравнения на сложение и вычитание.
Следует объяснить и выучить формулу этих правил:
- Чтобы найти целое необходимо все эти части сложить: Ц = Ч + Ч
- Чтобы найти часть, нужно из целого вычесть другую (известную) часть Ч = Ц — Ч
- Немного подробнее о том, как это сделать, объясню на примере с кружками красного и синего цвета. Назови что здесь целое, а что часть? Что нужно сделать, чтобы на столе остались только красные кружки? (Убрать синие кружки).
Запомни правило: Чтобы найти одну часть, нужно из целого вычесть другую (известную) часть. Что нужно сделать, чтобы на столе были все кружки? (Сложить вместе красные и синие кружки).
Запомни правило: Чтобы найти целое число, необходимо все части сложить.
Начиная с подготовительного этапа, я в своей работе использую алгоритмы решения уравнений. Алгоритм — это набор понятных и точных инструкций, описывающих порядок действий исполнителя для достижения результата. Алгоритм решения уравнений помогает учащимся быстро и правильно находить корень уравнения. Схематичные алгоритмы в Приложение 2.
II. Введение понятия «уравнение»
Знакомство с уравнением происходит при решении задачи с отвлеченными числами. Например, к неизвестному числу прибавили 3 и получили 8; найти неизвестное число. По данным задачи составляется пример с неизвестным числом ( ___ + 3 =8). Затем учитель поясняет, что в математике принято обозначать неизвестное число латинскими буквами (н-р, Х (икс)). Предлагается записать пример с заменой неизвестного буквой. Ставиться цель научиться решать такие примеры. Решение основывается на знании состава числа и использовании наглядных пособий (кружки к примеру). Аналогично еще несколько примеров. После чего учитель поясняет, что такие примеры называются уравнениями и, что найти неизвестное число — значит решить уравнение. Определение уравнения и корня уравнения не дается в начальных классах.
III. Формирование умения решать уравнения
Способы решения уравнений
1. Способ подбора. Подбирается подходящее значение неизвестного числа из заданных значений, либо произвольного множества чисел. При подстановке данного числа в уравнение, оно должно превращать его в верное равенство. При подборе необходимо обращать внимание на то, с какого числа целесообразно начинать подбор. Подбор неизвестного числа может осуществляться с использованием числового ряда, по таблице сложения, с опорой на состав числа, в том числе на десятичный.
Накопленный опыт у школьников при решении уравнений позволяет им сократить количество подборов, что способствует углублению осознанности.
Очевидно, что неизвестное м. принимать только нулевое значение.
Очевидно, что х = 1, поскольку 78-1-1=76. математических выражений: «Найди уравнение среди предложенных записей:
2. Способ, опирающийся на взаимосвязь компонентов действий. Используются правила взаимосвязи компонентов действий. Трудность использования данных правил заключается в том, что многие дети путают правила взаимосвязи компонентов действий и названия компонентов (необходимо знать 6 правил и название 10 компонентов).
9+х=14. Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое. Значит х = 14-9, х=5.
7-х=2. Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность. Значит х=7-2, х=5.
Для решения уравнений данным способом в первое время в своей практике использую алгоритм-помощник для решения уравнений. (Приложение 1)
Особо хочется отметить пункт «проверка»:
- подставь найденное значение неизвестного в уравнение.
- вычисли значение левой части уравнения.
- сравни значение левой и правой части уравнения.
При проверке уравнения следует показать учащимся, что результат, полученный в левой части уравнения, нужно сравнить со значением в правой части. Необходимо добиться осознанного выполнения проверки.
Для уравнений со скобками вида (6+х)-5=38 используется правило взаимосвязи компонентов действий. Левую часть уравнения рассматривают сначала как разность, считая выражение в скобках единым неизвестным компонентом. Этот единый неизвестный компонент — уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое и т.д.
Ряд альтернативных учебников математики для начальных классов практикуют знакомство детей с более сложными уравнениями (Аргинская, Петерсон), для решения которых правила взаимосвязи компонентов действий рекомендуется применять многократно.
IV. Формирование умения решать задачи с помощью уравнений
Процесс решения текстовой задачи с помощью уравнений состоит из следующих этапов:
- Восприятие текста задачи и первичный анализ ее содержания.
- Поиск решения:
- выделение неизвестных чисел;
- выбор неизвестного, которое целесообразно обозначить буквой;
- переформулировка текста задачи с принятыми обозначениями;
- запись полученного текста.
- Составление уравнения, его решение, проверка, перевод найденного значения переменной на язык текста задачи.
- Проверка решения задачи любым известным способом.
- Формулирование ответа на вопрос задачи.
Общеобразовательная школа выступает в качестве того учреждения, которое самым непосредственным образом отвечает за качество человеческой истории.
Каждое поколение людей предъявляет свои требования к школе. Раньше первостепенной задачей считалось вооружение учащихся глубокими знаниями, умениями и навыками. Сегодня задачи общеобразовательной школы иные. Обучение в школе не столько вооружает знаниями, умениями, навыками. На первый план выходит формирование универсальных учебных действий, обеспечивающих школьникам умение учиться, способность в массе информации отобрать нужное, саморазвиваться и самосовершенствоваться. Используя алгоритм, дети легко определяются с выбором действия, чей компонент нужно найти. В процессе алгоритмического решения необходимо выбрать нужный алгоритм, что требует конкретных знаний, переноса знаний в новую ситуацию, что учит думать.
Видео:Лайфхаки от учителя начальных классов Мананы ЗахаренковойСкачать
Тестовое задание по дисциплине: «Методика преподавания математики в начальной школе»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
311 лекций для учителей,
воспитателей и психологов
Получите свидетельство
о просмотре прямо сейчас!
Негосударственное образовательное учреждение
высшего профессионального образования
«Московский институт современного академического образования»
Федеральный институт повышения квалификации и переподготовки
Факультет дополнительного профессионального образования
«Методика преподавания математики в начальной школе»
слушатель факультета ДПО
г. Москва, 2016 г.
Найдите один неправильный ответ, а в случае его отсутствия
укажите: «Неправильного ответа нет».
А 1. Задачами дочислового периода являются:
1) выявление уровня дошкольной математической подготовки;
2) уточнение и расширение математических представлений детей;
3) развитие познавательных процессов;
4) специальная подготовка к введению понятия «число»;
5) формирование учебной деятельности;
6) неправильного ответа нет.
А 2. Подготовка младших школьников к изучению чисел ведется по следующим направлениям:
1) обучение счету;
2) уточнение представлений о количественном и порядковом значении числа;
3) обучение сравнению двух множеств по количеству элементов;
4) практическое знакомство с операциями объединения и дополнения конечных множеств;
5) формирование умения решать задачи на нахождение суммы, на нахождение остатка;
6) уточнение пространственных представлений.
А 3. С целью развития у детей мыслительных действий в период дочисловой подготовки предлагаются специальные упражнения:
1) выделение признаков сходства и различия предметов, геометрических фигур и др.;
2) счет предметов по указанному общему для них признаку;
3) выделение общего признака у всех рассматриваемых предметов;
4) классификация предметов по цвету, размеру, форме, назначению;
5) игры «Найди лишнее» и «Чего не хватает?»;
6) неправильного ответа нет.
А 4. С целью подготовки детей к написанию цифр предлагается система упражнений:
1) обведение контуров; 2) прописывание некоторых элементов цифр.
3) раскрашивание и штриховка; 4) рисование «бордюров»;
5) составление из геометрических фигур «рисунков» знакомых объектов, например, снеговика, домика и т.п.;
6) обведение в тетради одной или нескольких клеточек по образцу;
А 5. Подготовкой к операции счета являются упражнения видов:
1) заучивание считалок;
2) составление простейших числовых выражений по иллюстрациям;
3) разбиение множества на два взаимно дополняющих подмножества, например, красные и не красные, слева и справа и т.п.;
4) практическое выполнение объединения конечных множеств;
5) выделение общего свойства предметов из данного множества;
6) неправильного ответа нет.
А 6. Для формирования навыка счета необходимо выполнение учащимися достаточного количества разнообразных упражнений, отличительными признаками которых являются:
1) характеристическое свойство множества предметов, которые надо сосчитать;
2) пространственное размещение этих предметов (линейное, по замкнутому контуру, по иным конфигурациям);
3) опора на различные органы чувств (визуально, на слух, на ощупь);
4) опора на представление (без непосредственного восприятия) множества, элементы которого сосчитываются;
5) единицы счета (по одному, парами и т.п.);
6) неправильного ответа нет.
А 7. Формированию умения считать способствуют упражнения следующих видов:
1) сколько учеников в классе; 2) сколько колес у автомобиля;
3) сколько будет 3 плюс 2; 4) сколько хлопков сделал учитель;
5) сколько раз присел Коля; 6) сколько пар тетрадей в стопке .
А 8. При обучении счету учителю необходимо обращать внимание учащихся на строгое соблюдение следующих требований:
1) счет вести слева направо;
2) нельзя пропускать предметы;
3) нельзя один и тот же предмет сосчитывать более одного раза;
4) счет начинать с числа «один»;
5) далее называть все числа по порядку;
6) ответом на вопрос «Сколько?» является последнее названное при счете число.
А 9. При обучении сравнению множеств учащимся предлагается система упражнений постепенно усложняющихся видов:
1) множества располагаются так, чтобы каждый элемент второго множества оказался под одним элементом первого множества;
2) элементы обоих множеств располагаются линейно, но без очевидного разбиения их на пары;
3) элементы обоих множеств располагаются линейно, но вперемешку (например, круги и квадраты кладутся в каждом из двух рядов);
4) элементы одного из множеств раскладываются линейно, а другого по произвольной конфигурации;
5) элементы обоих множеств располагаются в виде неупорядоченных групп;
6) неправильного ответа нет.
А 10. Упражнения на сравнение и на уравнивание двух множеств по количеству составляющих их элементов являются наглядно-действенной основой для осознания детьми:
1) конкретного смысла отношений «равно», «больше», «меньше»;
2) понятий «числовое равенство» и «числовое неравенство»;
3) конкретного смысла отношений «больше на» и «меньше на»;
4) взаимосвязи отношений «больше» и «меньше»;
5) конкретного смысла вопросов «На сколько больше?», «На сколько меньше?» и их взаимосвязи;
6) неправильного ответа нет.
А 11. Упражнения в сравнении двух множеств выполняют следующие дидактические функции:
1) подготовка к введению понятия натурального числа;
2) формирование навыка счета;
3) запоминание некоторых табличных случаев сложения;
4) подготовка к решению арифметических задач с разностными отношениями между числами;
5) обучение простейшим предматематическим доказательствам утверждений вида: «Яблок больше, чем груш, потому что …..»;
6) неправильного ответа нет.
А 12. При планировании организационных форм работы первоклассников на уроке учитель предусматривает:
1) практические упражнения с использованием разнообразного дидактического материала;
2) сочетание фронтальной работы с аналогичной индивидуальной;
3) своевременную смену видов деятельности учащихся;
4) широкое использование игр, игровых ситуаций, занимательных заданий, разнообразных средств наглядности;
5) более свободное поведение детей; 6) неправильного ответа нет.
Среди предложенных вариантов ответов укажите один правильный.
Б 1. В соответствии с программными требованиями младшие школьники должны усвоить алгебраические понятия (термины) на уровне:
1) узнавания объектов изучения, обозначенных терминами;
2) запоминания терминов;
3) формального определения понятия;
4) понимания отличительных признаков понятия и правильного применения в своей математической речи соответствующих терминов;
5) включения в систему родственных понятий;
6) правильного ответа нет.
Б 2. Правила порядка выполнения арифметических действий в сложных выражениях – это:
1) утверждение, которое нужно доказывать;
2) следствие законов арифметических действий;
3) общепринятое соглашение, договоренность;
4) вывод, полученный путем наблюдений и обобщения;
5) требование программы по математике;
6) правильного ответа нет.
Б 3. Выражение а – в ∙ с можно прочитать:
1) а минус в умножить на с;
2) из числа а вычесть число в и умножить на число с;
3) разность чисел а и в умножить нас;
4) число а уменьшить на произведение чисел в и с;
5) число а уменьшить нави увеличить всраз;
6) правильного ответа нет.
Б 4. Впервые с числовыми равенствами и неравенствами учащиеся начальных классов встречаются при сравнении:
1) двух предметных множеств по их численности, когда выполняется соответствующая запись на математическом языке;
2) двух однозначных чисел;
3) суммы и числа;
4) двух сумм; 5) суммы и разности; 6) двух разностей.
Б 5. С ошибкой выполнено преобразование выражения:
1) 18 · 3 = (10 + 8) · 3 = 30 + 24 = 54 ;
2) 45 + 38 = (40 +5) + (30 + 8) = 40 + 30 = 70 + 13 = 83;
3) 84 – 7 = 84 – (4 + 3) = 80 – 3 = 77;
4) 42 : 14 = 42 : (7 ∙ 2) = (42 : 7) : 2 = 6 : 2 = 3;
5) 4600 : 200 = 4600 : (2 · 100) = (4600 : 100) : 2 = 46 : 2 = 23;
6) правильного ответа нет.
Б 6. С ошибкой выполнено преобразование выражения:
1) а : (в : с) = (а : в) · с;
2) 480 : (4 · 10) = 48 : 4 = 12;
3) (а + в) – с = (а – с) + в = а + (в – с);
4) 19 – 5 = (10 + 9) – 5 = 10 + (9 – 5) = 10 + 4 = 14;
5) 19 – 5 = (10 + 9) – 5 = (10 – 5) + 9 = 5 + 9 = 14;
6) правильного ответа нет.
Б 7. Переменная – это:
1) буква латинского алфавита;
2) место для заполнения;
6) правильного ответа нет.
Б 8. Первый способ решения уравнений, который применяют учащиеся начальных классов, это:
1) уравнивание двух множеств предметов;
3) с помощью графов;
4) сравнение двух выражений с переменной;
5) использование правил нахождения неизвестных компонентов арифметических действий;
6) равносильные преобразования заданного уравнения.
Б 9. Для ознакомления младших школьников с правилами а · 1 = аиа · 0 = 0используется метод:
1) неполная индукция; 2) аналогия; 3) дедукция;
4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.
Б 10. Ведущим методом ознакомления младших школьников с правилами а : 1 = аиа : а = 1является:
1) неполная индукция; 2) аналогия; 3) дедукция;
4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.
Б 11. Вывод правил а : а = 1иа : 1 = а в начальных классах осуществляется с опорой на:
1) действия с предметными множествами;
2) конкретный смысл действия деления;
3) взаимосвязь деления с вычитанием;
4) взаимосвязь деления с умножением;
5) наблюдение нескольких частных случаев вида 6 : 6 = 1 и 6 : 1 = 6;
6) правильного ответа нет.
Б 12. Правило 0 · а = 0в начальных классах выводится с опорой на:
1) переместительный закон умножения;
2) взаимосвязь умножения со сложением;
3) взаимосвязь умножения с делением;
4) действия с предметными множествами;
5) правило «На нуль делить нельзя»;
6) правильного ответа нет.
Б 13. Самым удобным примером – помощником для решения уравнений вида а – х = вявляется:
1) 5 – х = 3; 2) 15 – 12 = 3; 3) 18 – 9 = 9;
4) 18 – 6 = 12; 5) 7 – ٱ = 1; 6) 5 – 2 = 3.
Б 14. Учащиеся начальных классов реже всего ошибаются при решении уравнений вида:
1) а + х = в; 2)х – а = в; 3)а – х = в;
Заполни пропуски, если они есть в заданиях.
В 1. Цифра – это знак . для обозначения числа на письме.
В 2. Натуральное число – это общее свойство . . . класса конечных равномощных множеств.
В 3. Разряд – это . место . . , занимаемое цифрой в записи числа.
В 4. Класс – это . совокупность . . трех последовательных разрядов, начиная с разряда единиц.
В 5. С нумерационным понятием «разряд» учащиеся впервые встречаются при изучении чисел . первого десятка . . .
В 6. С понятием «класс» учащиеся знакомятся в концентре . тысяча . . .
В 7. В концентре «Тысяча» учащиеся знакомятся с новой счетной единицей . . сотней . .
В 8. Какое нумерационное понятие формируется через систему упражнений:
1) назвать число, следующее за данным или предшествующее ему;
2) продолжить ряд чисел;
3) поставить нужный знак: 4 * 5, 8 * 10;
4) вычислить 2 + 1; 5 + 1, 6 – 1;
5) вставить пропущенные числа;
6) расположить заданные числа в порядке следования? натуральное число
В 9. Из порядковых номеров вариантов ответов в заданиях А6 и В9 образуйте и запишите упорядоченные пары, в которых первая координата указывает источник получения натуральных чисел, а вторая обозначает его соответствующую функцию:
1) количественная; 2) порядковая;
3) операторная; 4) результат измерения величины.
В 10. С операторной функцией натурального числа учащиеся впервые знакомятся при изучении темы . умножение . . .
В 11. При изучении нумерации двузначных чисел полоску длиной 1 дм можно использовать в качестве . модели десятка . . .
В 12. При изучении нумерации трехзначных чисел 1 кв. дм можно использовать в качестве . . .. сотни
В 13. Модели разрядных единиц могут быть самыми различными по внешнему виду, но всегда остается неизменным . способ . . их образования.
В 14. Упражнения в счете большой совокупности предметов сначала по одному, а потом другими разрядными единицами способствуют пониманию сущности принципа . поклассового объединения разрядов . . .
В 15. При выполнении заданий вида: «Из чисел 60, 8 и 68 составьте четыре примера на сложение и вычитание» учащиеся закрепляют знания о . . разрядном составе числа . .
В 16. Прием закрывания цифр низших разрядов используется для выделения в многозначном числе количества единиц в самом высшем разряде
В 17. При выполнении заданий вида: «С помощью цифр 3, 7, 1 запишите всевозможные двузначные числа» учащиеся закрепляют знания о принципе поместного значения цифр . . ..
В 18. В частном чисел 32018 и 74 три цифры, потому что первое неполное делимое . 320 сотен . . .
В 19. Запишите число, в котором 10 единиц, 10 десятков, 10 сотен и 10 тысяч 11110 .
В 20. Запишите число, в котором 11 единиц, 11 десятков и 11 сотен 1221 .
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Как решать уравнения: от простого к сложному 2-4 класс
Уравнение — равенство, содержащее букву латинского алфавита, значение которой нужно найти.
Решить уравнение — значит подобрать такое число, при котором равенство становится верным.
Любые уравнения решаются на основе зависимости между компонентами. Простые уравнения учащиеся начальной школы начинают решать уже 2 классе. По мере взросления, усложняются и уравнения, переходя от простых к сложным уравнениям в 4 классе начальной школы.
Простые уравнения во 2 классе решают на основе взаимосвязей между компонентами при сложении или вычитании. Важно соблюдать алгоритм решения уравнения.
Решение уравнения
Объяснение
чтобы найти первое слагаемое, нужно из суммы вычесть второе слагаемое.
Вычисляю: 35 — 7 = 28
Проверяю: 28 + 7 = 35
чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.
Вычисляю: 20 + 13 = 33
Проверяю: 33 — 13 = 20
чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность
Вычисляю: 46 — 42 = 4
Проверяю: 46 — 4 = 42
Простые уравнения вида х • 6 = 72, х : 8 = 12, 64 : х = 16 решают на основе взаимосвязей между результатами и компонентами действий.
Решение уравнения
Объяснение
1) Читаю уравнение: произведение х и 6 равно 72.
2) Вспоминаю правило: чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
3) Вычисляю: х = 72 : 6
4) Проверяю: 12 • 6 = 72
1) Читаю уравнение: частное х и 8 равно 12.
2) Вспоминаю правило: чтобы найти неизвестное делимое, надо частное умножить на делитель.
3) Вычисляю: х = 12 • 8
4) Проверяю: 96 : 8 = 12
1) Читаю уравнение: частное 64 и х равно 16.
2) Вспоминаю правило: чтобы найти неизвестный делитель, надо делимое разделить на частное.
3) Вычисляю: х = 64 : 16
4) Проверяю: 64 : 4 = 16
Сложные уравнения в начальной школе состоят из нескольких арифметических действий. Алгоритм решения заключается в превращение сложного уравнения в простое.
Уравнения на нахождение неизвестного слагаемого
1)Вычисляю значение выражения в правой части уравнения: 12 • 4 = 48.
2) В уравнении х + 13 = 48 неизвестно первое слагаемое.
3) Вспоминаю правило: чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
4) Вычисляю: х = 48 — 13
5) Проверяю: 35 + 13 = 12 • 4
Уравнения на нахождение неизвестного уменьшаемого
1) Вычисляю значение выражения в правой части уравнения: 51 : 17 = 3.
2) В уравнении х — 24 = 3 неизвестно уменьшаемое.
3) Вспоминаю правило: чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
4) Вычисляю: х = 24 + 3
5) Проверяю: 27 — 24 = 51 : 17
Уравнения на нахождение неизвестного вычитаемого
640 — х = 180 + 120
640 — 340 = 180 + 120
1) Вычисляю значение выражения в правой части уравнения: 180 + 120 = 300.
2) В уравнении 640 – х = 300 неизвестно вычитаемое.
3) Вспоминаю правило: чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
4) Вычисляю: х = 649 – 300
5) Проверяю: 640 — 340 = 180+120
Уравнения на нахождение неизвестного множителя
5 • 77 = 131 + 254
1) Вычисляю значение выражения в правой части уравнения: 131 + 254 = 385.
2) В уравнении 5 • х = 385 неизвестен второй множитель.
3) Вспоминаю правило: чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
4) Вычисляю: х = 385 : 5
5) Проверяю: 5 • 77 = 131 + 254
Уравнения на нахождение неизвестного делимого
64 000 : 8 = 800 • 10
1) Вычисляю значение выражения в правой части.
2) Вспоминаю правило: чтобы найти делимое, нужно частное умножить на делитель.
Уравнения на нахождение неизвестного делителя
1) Вычисляю значение выражения вправой части.
2) Вспоминаю правило: чтобы найти неизвестный делитель, нужно делимоеразделить на частное.
Как решать сложные уравнения в 4 классе подробно рассмотрено в статье по ссылке.
📹 Видео
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать
Математика в начальной школе: основы решения уравненийСкачать
Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика ШаталоваСкачать
Методика обучения письму и чтению в начальной школе | Видеолекции | ИнфоурокСкачать
11 класс, 27 урок, Общие методы решения уравненийСкачать
Задачи на движение. Учимся решать задачи на движение. Способы решения задач на движение.Скачать
Краткая запись задачи. Как сделать краткую запись к задаче?Скачать
Задачи по математике 1 класс. Как научиться решать задачи в 1 классе?Скачать
Решение неравенства методом интерваловСкачать
Решение учебно-практических задач в начальной школеСкачать
Математика базовая и математика углубленная: методика обучения решению уравненийСкачать
Как избавиться от ошибок в тетради за 1 урок. Как писать слова без ошибок. Орфографическая зоркостьСкачать
Как проводить опрос на уроке? Школа молодого учителя. Советы молодым учителям.Скачать
Как решать неравенства? Часть 1| МатематикаСкачать
Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Задачи по математике 4 класс. Как научиться решать задачи в 4 классе?Скачать