Уравнения в начальных классах рассматриваются как верные равенства, решение уравнения сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение.
Решить уравнение – значит найти число (значение переменной), при котором равенство будет верным. Это число называют корнем уравнения.
Термин «решение» употребляется в двух смыслах: 1) обозначает последовательность тех операций, которые учащиеся выполняют, решая уравнение; 2) обозначает число (корень) при подстановке которого в уравнение оно обращаетс в верное равенство.
В практике соврем. Нач.шк. реализуются два подхода к обучению.
1. Сторонники первого подхода считают, что познакомить с уравнениями и способами их решения надо как можно раньше. Обоснование: дети смогут овладеть математической терминологией и способами действий в процессе решения уравнений. Чем раньше они начнут их решать, тем больше времени смогут упражняться в овладении способами решения.
2. Сторонники второго подхода предлагают приступить к решению уравнений только после того, как дети усвоят взаимосвязь между компонентами и результатами АД, овладеют необходимой терминологией и смогут осознанно формулировать правила (способы действий), которые лежат в основе арифметического способа решения уравнений.
Аргументом в данном курсе на более позднее решение уравнений является нацеленность курса на развитие мышления младших школьников в процессе усвоения программного материала. А поскольку эффективность мышления рассматривается психологами как результат системы знаний, когда разные сведения постоянно сопоставляются друг с другом в самых разных отношениях и аспектах, по-разному обобщаются и дифференцируются, входят разные цепочки причинно-следственных связей, то прежде всего, как считают авторы, необходимо понимание школьником изучаемых вопросов и осознание взаимосвязи между ними.
На подготовительном этапе дети учатся решать примеры «с окошками». В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным м.б. не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое).
Знакомство с уравнением происходит при решении задачи с отвлеченными числами. Н-р: К неизвестному числу прибавили 3 и получили 8. Найти неизвестное число. По данным задачи составляется пример с неизвестным числом ( + 3 =8). Затем учитель пояснет, что в математике принято обозначать неизвестное число латинскими буквами (н-р Х (икс)). Предлагается записать пример с заменой неизвестного буквой. Ставиться цель научиться решать такие примеры. Решение основывается на знании состава числа и использовании наглядных пособий (кружки к примеру). Аналогично еще неск. примеров. После чего учитель поясняет что такие примеры называются уравнениями и, что найти неизвестное число – значит решить уравнение. Определение уравнения и корня уравнения не дается в нач. кл.
С первых же шагов обучения решению уравнений приучают детей к тому, чтобы они выполняли проверку: найденное число подставляли в выражение, вычисляли его значение и сравнивали с тем значением, которое дано в уравнении.
В начальной школе рассматриваются два способа решения уравнения:1. Способ подбора. Подбирается подходящее значение неизвестного числа из заданных значений, либо произвольного множества чисел. При подстановке данного числа в уравнение, оно должно превращать его в верное равенство.
При подборе необходимо обращать внимание на то, с какого числа целесообразно начинать подбор.
Накопленный опыт у школьников при решении уравнений позволяет им сократить количество подборов, что способствует углублению осознанности.
36+х+х+х=35 .Очевидно, что неизвестное м. принимать только нулевое значение.
78-х-х=76. Очевидно, что х = 1, поскольку 78-1-1=76.
2. Способ, опирающийся на взаимосвязь компонентов действий. Используются правила взаимосвязи компонентов действий. Трудность использования данных правил заключается в том, что многие дети путают правила взаимосвязи компонентов действий и названия компонентов (необх.Знать 6 праил и название 10 компонентов).
9+х=14. Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое. Значит х = 14-9, х=5.
7-х=2. Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность. Значит х=7-2, х=5.
Для решения уравнений данным способом исп-ся правила и памятку. 1)Прочитай уравнение. 2) Назови, что известно в данном уравнении, а что неизвестно. 3) Вспомни правило, как найти неизвестное число. 4) Найди неизвестное число, выполнив АД 5) Сделай проверку. 6) Назови, чему равно неизвестное число.
Проверка: 1. подставь найденное значение неизвестного в уравнение. 2. вычисли значение левой части уравнения. 3. сравни значение левой и правой части уравнения.
Для уравнений со скобками вида (6+х)-5=38 исп-ся правило взаимосвязи компонентов действий. Левую часть уравнения рассматривают сначала как разность, считая выражение в скобках единым неизвестным компонентом. Этот единый неизв. комп. – уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое и т.д.
Ряд альтернативных учебников математики для нач.кл. практикуют знакомство детей с более сложными уравнениями (Аргинская, Петерсон), для решения которых правила взаимосвязи компонентов действий рекомендуется применять многократно.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Работа над уравнениями в начальной школе
методическая разработка на тему
Методическая разработка «Работа над уравнениями в начальной школе» поможет учителям начальных классов в работе над уравнениями. Здесь же прилагаются алгоритмы по решению уравнений разного вида.
Видео:Лайфхаки от учителя начальных классов Мананы ЗахаренковойСкачать
Скачать:
Вложение | Размер |
---|---|
rabota_nad_uravneniyami_v_nachalnoy_shkole.doc | 80.5 КБ |
Видео:лучший учебник по математике (начальная школа), ошибки начальной школы в математике - Л. А. ЯсюковаСкачать
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа N135″ имени академика Б.В.Литвинова»
Работа над уравнениями в начальной школе.
Подготовила учитель начальных классов:
Самойлова Анжелика Владимировна
Работа над уравнениями в начальной школе.
Большую трудность для младшего школьного возраста представляет умение решать уравнения. Изучение уравнений в начальной школе носит пропедевтический характер. Поэтому очень важно подготовить детей в начальной школе к более глубокому изучению уравнений в старших классах. В начальной школе в процессе работы над уравнением закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируется умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.
Изучение уравнений начинается с подготовительного этапа уже в 1 классе, когда дети, действуя с предметами, решают такие «задачи»:
Затем учащиеся переходят к действиям над числами и выполняют задания, связанные с нахождением неизвестного числа в «окошке», например:
Дети находят число либо подбором, либо на основе знаний состава числа. На данном этапе учителю необходимо включать в устные упражнения следующие задания:
— Сколько надо вычесть из 3, чтобы получилось 2?
— Сколько надо прибавить к 2, чтобы получилось 4?
На втором этапе учащиеся знакомятся с понятиями «уравнение» и «корень уравнения». На протяжении нескольких уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. Названия компонентов арифметических действий были введены в речевую практику учащихся и использовались для чтения равенств и выражений, пока правило нахождения неизвестного компонента в уравнениях не заучивается. Уравнения решаются на основе взаимосвязи между частью и целым. При изучении данной темы дети должны научиться находить в уравнениях компоненты,
соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, уменьшаемое, разность). При решении уравнений детям нужно будет вспомнить лишь два известных правила:
— Целое равно сумме частей.
— Чтобы найти часть, надо из целого вычесть другую часть.
Эту работу облегчает графическое обозначение части ______ и целого , а также понимание того, что целое – это большее число.
Для того чтобы облегчить работу над формированием навыка решения уравнений, можно проводить в классе следующую работу.
- Составление и решение уравнений по схеме.
2. Составление и решение уравнений с помощью модели числа.
— Замените модели числами:
3. Уравнения с буквами.
— Как из волка получить вола ?
4. Составление и решение уравнений с помощью числового луча.
5. Выполни проверку и найди ошибку.
Дети решают: 24 + 8 = 16
6.Составиьуравнения с числами Х, 4, 10 и реши их.
Х + 4 = 10; 10 – Х = 4; Х – 10 = 4 и т.п.
7. Из данных уравнений реши те, где Х находится сложением.
Х +16 = 20; Х -18 = 30; 29 – Х = 19
8. Рассмотри решение уравнения и вставь соответствующий знак.
К концу изучения темы дети учатся комментировать уравнения через компоненты действий. Работа строится следующим образом:
1) читаю уравнение;
2) нахожу известные и неизвестные компоненты (части и целое);
3) применяю правило (по нахождению части или целого);
4) нахожу, чему равен Х;
5) комментирую через компоненты действий.
Следующий этап – решение уравнений вида: а ∙ Х = в; а : Х = в; Х : а = в .
Уравнения этого вида решаются на основе взаимосвязи между площадью прямоугольника и его сторонами. Поэтому изменяется и графическое обозначение компонентов уравнения:
— площадь прямоугольника, а _____ — его стороны. Здесь важно понять то, что обучение решению и комментированию уравнений ведется по определенной схеме:
1 этап: Решение с одновременным комментированием правил нахождения площади и его сторон. Например, Х : 2 = 5 ( Х – площадь прямоугольника, 2 и 5 – его стороны).
Х = 2 ∙ 5 (чтобы найти площадь прямоугольника, надо перемножить его стороны)
2 этап: Решение уравнений с комментированием(через площадь прямоугольника и его стороны).
Комментирование через компоненты действий после решения уравнения.
Для отработки навыков решения уравнений на умножение и деление можно использовать следующие упражнения.
1. Выполни проверку и найди ошибку.
Дети решают: 2 : 2 = 4
2. Проанализируй решение уравнения и найди ошибку.
Ошибки: 1) 9 – это площадь, на целое, ее надо обозначить прямоугольником;
2) Х – это сторона, надо площадь разделить на другую сторону.
3. Составь уравнения с числами 3, Х, 12 и реши их.
Дети составляют: 12 : Х = 3; 3 ∙ Х = 12 и т.п.
4. Изданных уравнений реши те, которые решаются делением.
Х ∙ 2 = 6; Х : 4 = 16; 12 : Х = 4
5. Рассмотри решение уравнений и вставь соответствующий знак в запись уравнения.
6. Составь и реши уравнение:
— Какое число надо умножить на пять, чтобы получилось 25?
Х ∙ 3 = 15; Х : 4 = 5; 16 : Х = 2
— Какое уравнение лишнее? Объясни свой выбор.
— первое уравнение – Х равен нечетному числу;
— второе уравнение – Х находим умножением;
— третье уравнение – неизвестен второй компонент и т.п.
Последний этап при работе с уравнениями в начальной школе – знакомство учащихся с составными уравнениями. Решение таких уравнений строится на качественном анализе выражения, стоящего в левой части уравнения: какие действия указаны в выражении, какое действие выполняется последним, как читается запись этого выражения, какому компоненту этого действия принадлежит неизвестное число и т.п. К этому времени учащиеся должны твердо овладеть следующими умениями:
— решение простых уравнений,
— анализ решений уравнений по компонентам действий,
— чтение записи выражений в два – три действия,
— порядок выполнения действий в выражениях со скобками и без них.
На данном этапе дети должны понимать, что в записи уравнений в качестве неизвестного числа могут использоваться различные буквы латинского алфавита, например: К + 4 = 3; Р – 3 = 8; Z : 7 = 6 и т.п.
Запись решения уравнений сопровождается словесным описанием выполняемых действий. Для выработки правильной математической речи и навыков решения первых уравнений данного вида необходимо использовать таблицы с образцами решений. Но так как дети уже с 1-го класса знакомы с записью различных алгоритмов, то можно использовать только алгоритм решения уравнений, по которому дети и анализируют уравнения.
Видео:Математика в начальной школе: основы решения уравненийСкачать
Тестовое задание по дисциплине: «Методика преподавания математики в начальной школе»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
Негосударственное образовательное учреждение
высшего профессионального образования
«Московский институт современного академического образования»
Федеральный институт повышения квалификации и переподготовки
Факультет дополнительного профессионального образования
«Методика преподавания математики в начальной школе»
слушатель факультета ДПО
г. Москва, 2016 г.
Найдите один неправильный ответ, а в случае его отсутствия
укажите: «Неправильного ответа нет».
А 1. Задачами дочислового периода являются:
1) выявление уровня дошкольной математической подготовки;
2) уточнение и расширение математических представлений детей;
3) развитие познавательных процессов;
4) специальная подготовка к введению понятия «число»;
5) формирование учебной деятельности;
6) неправильного ответа нет.
А 2. Подготовка младших школьников к изучению чисел ведется по следующим направлениям:
1) обучение счету;
2) уточнение представлений о количественном и порядковом значении числа;
3) обучение сравнению двух множеств по количеству элементов;
4) практическое знакомство с операциями объединения и дополнения конечных множеств;
5) формирование умения решать задачи на нахождение суммы, на нахождение остатка;
6) уточнение пространственных представлений.
А 3. С целью развития у детей мыслительных действий в период дочисловой подготовки предлагаются специальные упражнения:
1) выделение признаков сходства и различия предметов, геометрических фигур и др.;
2) счет предметов по указанному общему для них признаку;
3) выделение общего признака у всех рассматриваемых предметов;
4) классификация предметов по цвету, размеру, форме, назначению;
5) игры «Найди лишнее» и «Чего не хватает?»;
6) неправильного ответа нет.
А 4. С целью подготовки детей к написанию цифр предлагается система упражнений:
1) обведение контуров; 2) прописывание некоторых элементов цифр.
3) раскрашивание и штриховка; 4) рисование «бордюров»;
5) составление из геометрических фигур «рисунков» знакомых объектов, например, снеговика, домика и т.п.;
6) обведение в тетради одной или нескольких клеточек по образцу;
А 5. Подготовкой к операции счета являются упражнения видов:
1) заучивание считалок;
2) составление простейших числовых выражений по иллюстрациям;
3) разбиение множества на два взаимно дополняющих подмножества, например, красные и не красные, слева и справа и т.п.;
4) практическое выполнение объединения конечных множеств;
5) выделение общего свойства предметов из данного множества;
6) неправильного ответа нет.
А 6. Для формирования навыка счета необходимо выполнение учащимися достаточного количества разнообразных упражнений, отличительными признаками которых являются:
1) характеристическое свойство множества предметов, которые надо сосчитать;
2) пространственное размещение этих предметов (линейное, по замкнутому контуру, по иным конфигурациям);
3) опора на различные органы чувств (визуально, на слух, на ощупь);
4) опора на представление (без непосредственного восприятия) множества, элементы которого сосчитываются;
5) единицы счета (по одному, парами и т.п.);
6) неправильного ответа нет.
А 7. Формированию умения считать способствуют упражнения следующих видов:
1) сколько учеников в классе; 2) сколько колес у автомобиля;
3) сколько будет 3 плюс 2; 4) сколько хлопков сделал учитель;
5) сколько раз присел Коля; 6) сколько пар тетрадей в стопке .
А 8. При обучении счету учителю необходимо обращать внимание учащихся на строгое соблюдение следующих требований:
1) счет вести слева направо;
2) нельзя пропускать предметы;
3) нельзя один и тот же предмет сосчитывать более одного раза;
4) счет начинать с числа «один»;
5) далее называть все числа по порядку;
6) ответом на вопрос «Сколько?» является последнее названное при счете число.
А 9. При обучении сравнению множеств учащимся предлагается система упражнений постепенно усложняющихся видов:
1) множества располагаются так, чтобы каждый элемент второго множества оказался под одним элементом первого множества;
2) элементы обоих множеств располагаются линейно, но без очевидного разбиения их на пары;
3) элементы обоих множеств располагаются линейно, но вперемешку (например, круги и квадраты кладутся в каждом из двух рядов);
4) элементы одного из множеств раскладываются линейно, а другого по произвольной конфигурации;
5) элементы обоих множеств располагаются в виде неупорядоченных групп;
6) неправильного ответа нет.
А 10. Упражнения на сравнение и на уравнивание двух множеств по количеству составляющих их элементов являются наглядно-действенной основой для осознания детьми:
1) конкретного смысла отношений «равно», «больше», «меньше»;
2) понятий «числовое равенство» и «числовое неравенство»;
3) конкретного смысла отношений «больше на» и «меньше на»;
4) взаимосвязи отношений «больше» и «меньше»;
5) конкретного смысла вопросов «На сколько больше?», «На сколько меньше?» и их взаимосвязи;
6) неправильного ответа нет.
А 11. Упражнения в сравнении двух множеств выполняют следующие дидактические функции:
1) подготовка к введению понятия натурального числа;
2) формирование навыка счета;
3) запоминание некоторых табличных случаев сложения;
4) подготовка к решению арифметических задач с разностными отношениями между числами;
5) обучение простейшим предматематическим доказательствам утверждений вида: «Яблок больше, чем груш, потому что …..»;
6) неправильного ответа нет.
А 12. При планировании организационных форм работы первоклассников на уроке учитель предусматривает:
1) практические упражнения с использованием разнообразного дидактического материала;
2) сочетание фронтальной работы с аналогичной индивидуальной;
3) своевременную смену видов деятельности учащихся;
4) широкое использование игр, игровых ситуаций, занимательных заданий, разнообразных средств наглядности;
5) более свободное поведение детей; 6) неправильного ответа нет.
Среди предложенных вариантов ответов укажите один правильный .
Б 1. В соответствии с программными требованиями младшие школьники должны усвоить алгебраические понятия (термины) на уровне:
1) узнавания объектов изучения, обозначенных терминами;
2) запоминания терминов;
3) формального определения понятия;
4) понимания отличительных признаков понятия и правильного применения в своей математической речи соответствующих терминов;
5) включения в систему родственных понятий;
6) правильного ответа нет.
Б 2. Правила порядка выполнения арифметических действий в сложных выражениях – это:
1) утверждение, которое нужно доказывать;
2) следствие законов арифметических действий;
3) общепринятое соглашение, договоренность;
4) вывод, полученный путем наблюдений и обобщения;
5) требование программы по математике;
6) правильного ответа нет.
Б 3. Выражение а – в ∙ с можно прочитать:
1) а минус в умножить на с ;
2) из числа а вычесть число в и умножить на число с ;
3) разность чисел а и в умножить на с ;
4) число а уменьшить на произведение чисел в и с ;
5) число а уменьшить на в и увеличить в с раз;
6) правильного ответа нет.
Б 4. Впервые с числовыми равенствами и неравенствами учащиеся начальных классов встречаются при сравнении:
1) двух предметных множеств по их численности, когда выполняется соответствующая запись на математическом языке;
2) двух однозначных чисел;
3) суммы и числа;
4) двух сумм; 5) суммы и разности; 6) двух разностей.
Б 5. С ошибкой выполнено преобразование выражения:
1) 18 · 3 = (10 + 8) · 3 = 30 + 24 = 54 ;
2) 45 + 38 = (40 +5) + (30 + 8) = 40 + 30 = 70 + 13 = 83;
3) 84 – 7 = 84 – (4 + 3) = 80 – 3 = 77;
4) 42 : 14 = 42 : (7 ∙ 2) = (42 : 7) : 2 = 6 : 2 = 3;
5) 4600 : 200 = 4600 : (2 · 100) = (4600 : 100) : 2 = 46 : 2 = 23;
6) правильного ответа нет.
Б 6. С ошибкой выполнено преобразование выражения:
1) а : (в : с) = (а : в) · с ;
2) 480 : (4 · 10) = 48 : 4 = 12;
3) (а + в) – с = (а – с) + в = а + (в – с) ;
4) 19 – 5 = (10 + 9) – 5 = 10 + (9 – 5) = 10 + 4 = 14;
5) 19 – 5 = (10 + 9) – 5 = (10 – 5) + 9 = 5 + 9 = 14;
6) правильного ответа нет.
Б 7. Переменная – это:
1) буква латинского алфавита;
2) место для заполнения;
6) правильного ответа нет.
Б 8. Первый способ решения уравнений, который применяют учащиеся начальных классов, это:
1) уравнивание двух множеств предметов;
3) с помощью графов;
4) сравнение двух выражений с переменной;
5) использование правил нахождения неизвестных компонентов арифметических действий;
6) равносильные преобразования заданного уравнения.
Б 9. Для ознакомления младших школьников с правилами а · 1 = а и а · 0 = 0 используется метод:
1) неполная индукция; 2) аналогия; 3) дедукция;
4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.
Б 10. Ведущим методом ознакомления младших школьников с правилами а : 1 = а и а : а = 1 является:
1) неполная индукция; 2) аналогия; 3) дедукция;
4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.
Б 11. Вывод правил а : а = 1 и а : 1 = а в начальных классах осуществляется с опорой на:
1) действия с предметными множествами;
2) конкретный смысл действия деления;
3) взаимосвязь деления с вычитанием;
4) взаимосвязь деления с умножением;
5) наблюдение нескольких частных случаев вида 6 : 6 = 1 и 6 : 1 = 6;
6) правильного ответа нет.
Б 12. Правило 0 · а = 0 в начальных классах выводится с опорой на:
1) переместительный закон умножения;
2) взаимосвязь умножения со сложением;
3) взаимосвязь умножения с делением;
4) действия с предметными множествами;
5) правило «На нуль делить нельзя»;
6) правильного ответа нет.
Б 13. Самым удобным примером – помощником для решения уравнений вида а – х = в является:
1) 5 – х = 3; 2) 15 – 12 = 3; 3) 18 – 9 = 9;
4) 18 – 6 = 12; 5) 7 – ٱ = 1; 6) 5 – 2 = 3.
Б 14. Учащиеся начальных классов реже всего ошибаются при решении уравнений вида:
1) а + х = в ; 2) х – а = в ; 3) а – х = в ;
Заполни пропуски, если они есть в заданиях.
В 1. Цифра – это знак . для обозначения числа на письме.
В 2. Натуральное число – это общее свойство . . . класса конечных равномощных множеств.
В 3. Разряд – это . место . . , занимаемое цифрой в записи числа.
В 4. Класс – это . совокупность . . трех последовательных разрядов, начиная с разряда единиц.
В 5. С нумерационным понятием «разряд» учащиеся впервые встречаются при изучении чисел . первого десятка . . .
В 6. С понятием «класс» учащиеся знакомятся в концентре . тысяча . . .
В 7. В концентре «Тысяча» учащиеся знакомятся с новой счетной единицей . . сотней . .
В 8. Какое нумерационное понятие формируется через систему упражнений:
1) назвать число, следующее за данным или предшествующее ему;
2) продолжить ряд чисел;
3) поставить нужный знак: 4 * 5, 8 * 10;
4) вычислить 2 + 1; 5 + 1, 6 – 1;
5) вставить пропущенные числа;
6) расположить заданные числа в порядке следования? натуральное число
В 9. Из порядковых номеров вариантов ответов в заданиях А6 и В9 образуйте и запишите упорядоченные пары, в которых первая координата указывает источник получения натуральных чисел, а вторая обозначает его соответствующую функцию:
1) количественная; 2) порядковая;
3) операторная; 4) результат измерения величины.
В 10. С операторной функцией натурального числа учащиеся впервые знакомятся при изучении темы . умножение . . .
В 11. При изучении нумерации двузначных чисел полоску длиной 1 дм можно использовать в качестве . модели десятка . . .
В 12. При изучении нумерации трехзначных чисел 1 кв. дм можно использовать в качестве . . . . сотни
В 13. Модели разрядных единиц могут быть самыми различными по внешнему виду, но всегда остается неизменным . способ . . их образования.
В 14. Упражнения в счете большой совокупности предметов сначала по одному, а потом другими разрядными единицами способствуют пониманию сущности принципа . поклассового объединения разрядов . . .
В 15. При выполнении заданий вида: «Из чисел 60, 8 и 68 составьте четыре примера на сложение и вычитание» учащиеся закрепляют знания о . . разрядном составе числа . .
В 16. Прием закрывания цифр низших разрядов используется для выделения в многозначном числе количества единиц в самом высшем разряде
В 17. При выполнении заданий вида: «С помощью цифр 3, 7, 1 запишите всевозможные двузначные числа» учащиеся закрепляют знания о принципе поместного значения цифр . . . .
В 18. В частном чисел 32018 и 74 три цифры, потому что первое неполное делимое . 320 сотен . . .
В 19. Запишите число, в котором 10 единиц, 10 десятков, 10 сотен и 10 тысяч 11110 .
В 20. Запишите число, в котором 11 единиц, 11 десятков и 11 сотен 1221 .
📽️ Видео
Мастер-класс учителя начальных классов Елкиной Дарии НиколаевныСкачать
Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать
Методика обучения письму и чтению в начальной школе | Видеолекции | ИнфоурокСкачать
Как сделать урок математики интересным? Урок математики в начальной школе. Школа молодого учителяСкачать
Задачи по математике 1 класс. Как научиться решать задачи в 1 классе?Скачать
Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Решение неравенства методом интерваловСкачать
Как решать неравенства? Часть 1| МатематикаСкачать
Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика ШаталоваСкачать
Как проводить опрос на уроке? Школа молодого учителя. Советы молодым учителям.Скачать
Математика базовая и математика углубленная: методика обучения решению уравненийСкачать
Задачи на движение. Учимся решать задачи на движение. Способы решения задач на движение.Скачать
Краткая запись задачи. Как сделать краткую запись к задаче?Скачать
Как проверяют учеников перед ЕНТСкачать
Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.Скачать