Первый способ решения уравнений который применяют учащиеся начальных классов

Уравнения и способы их решения в начальной школе.

Уравнения в начальных классах рассматриваются как верные равенства, решение уравнения сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение.

Решить уравнение – значит найти число (значение переменной), при котором равенство будет верным. Это число называют корнем уравнения.

Термин «решение» употребляется в двух смыслах: 1) обозначает последовательность тех операций, которые учащиеся выполняют, решая уравнение; 2) обозначает число (корень) при подстановке которого в уравнение оно обращаетс в верное равенство.

В практике соврем. Нач.шк. реализуются два подхода к обучению.

1. Сторонники первого подхода считают, что познакомить с уравнениями и способами их решения надо как можно раньше. Обоснование: дети смогут овладеть математической терминологией и способами действий в процессе решения уравнений. Чем раньше они начнут их решать, тем больше времени смогут упражняться в овладении способами решения.

2. Сторонники второго подхода предлагают приступить к решению уравнений только после того, как дети усвоят взаимосвязь между компонентами и результатами АД, овладеют необходимой терминологией и смогут осознанно формулировать правила (способы действий), которые лежат в основе арифметического способа решения уравнений.

Аргументом в данном курсе на более позднее решение уравнений является нацеленность курса на развитие мышления младших школьников в процессе усвоения программного материала. А поскольку эффективность мышления рассматривается психологами как результат системы знаний, когда разные сведения постоянно сопоставляются друг с другом в самых разных отношениях и аспектах, по-разному обобщаются и дифференцируются, входят разные цепочки причинно-следственных связей, то прежде всего, как считают авторы, необходимо понимание школьником изучаемых вопросов и осознание взаимосвязи между ними.

На подготовительном этапе дети учатся решать примеры «с окошками». В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным м.б. не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое).

Знакомство с уравнением происходит при решении задачи с отвлеченными числами. Н-р: К неизвестному числу прибавили 3 и получили 8. Найти неизвестное число. По данным задачи составляется пример с неизвестным числом ( + 3 =8). Затем учитель пояснет, что в математике принято обозначать неизвестное число латинскими буквами (н-р Х (икс)). Предлагается записать пример с заменой неизвестного буквой. Ставиться цель научиться решать такие примеры. Решение основывается на знании состава числа и использовании наглядных пособий (кружки к примеру). Аналогично еще неск. примеров. После чего учитель поясняет что такие примеры называются уравнениями и, что найти неизвестное число – значит решить уравнение. Определение уравнения и корня уравнения не дается в нач. кл.

С первых же шагов обучения решению уравнений приучают детей к тому, чтобы они выполняли проверку: найденное число подставляли в выражение, вычисляли его значение и сравнивали с тем значением, которое дано в уравнении.

В начальной школе рассматриваются два способа решения уравнения:1. Способ подбора. Подбирается подходящее значение неизвестного числа из заданных значений, либо произвольного множества чисел. При подстановке данного числа в уравнение, оно должно превращать его в верное равенство.

При подборе необходимо обращать внимание на то, с какого числа целесообразно начинать подбор.

Накопленный опыт у школьников при решении уравнений позволяет им сократить количество подборов, что способствует углублению осознанности.

36+х+х+х=35 .Очевидно, что неизвестное м. принимать только нулевое значение.

78-х-х=76. Очевидно, что х = 1, поскольку 78-1-1=76.

2. Способ, опирающийся на взаимосвязь компонентов действий. Используются правила взаимосвязи компонентов действий. Трудность использования данных правил заключается в том, что многие дети путают правила взаимосвязи компонентов действий и названия компонентов (необх.Знать 6 праил и название 10 компонентов).

9+х=14. Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое. Значит х = 14-9, х=5.

7-х=2. Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность. Значит х=7-2, х=5.

Для решения уравнений данным способом исп-ся правила и памятку. 1)Прочитай уравнение. 2) Назови, что известно в данном уравнении, а что неизвестно. 3) Вспомни правило, как найти неизвестное число. 4) Найди неизвестное число, выполнив АД 5) Сделай проверку. 6) Назови, чему равно неизвестное число.

Проверка: 1. подставь найденное значение неизвестного в уравнение. 2. вычисли значение левой части уравнения. 3. сравни значение левой и правой части уравнения.

Для уравнений со скобками вида (6+х)-5=38 исп-ся правило взаимосвязи компонентов действий. Левую часть уравнения рассматривают сначала как разность, считая выражение в скобках единым неизвестным компонентом. Этот единый неизв. комп. – уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое и т.д.

Ряд альтернативных учебников математики для нач.кл. практикуют знакомство детей с более сложными уравнениями (Аргинская, Петерсон), для решения которых правила взаимосвязи компонентов действий рекомендуется применять многократно.

Видео:Лайфхаки от учителя начальных классов Мананы ЗахаренковойСкачать

Лайфхаки от учителя начальных классов Мананы Захаренковой

Работа над уравнениями в начальной школе
методическая разработка на тему

Методическая разработка «Работа над уравнениями в начальной школе» поможет учителям начальных классов в работе над уравнениями. Здесь же прилагаются алгоритмы по решению уравнений разного вида.

Видео:лучший учебник по математике (начальная школа), ошибки начальной школы в математике - Л. А. ЯсюковаСкачать

лучший учебник по математике (начальная школа), ошибки начальной школы в математике - Л. А. Ясюкова

Скачать:

ВложениеРазмер
rabota_nad_uravneniyami_v_nachalnoy_shkole.doc80.5 КБ

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа N135″ имени академика Б.В.Литвинова»

Работа над уравнениями в начальной школе.

Подготовила учитель начальных классов:

Самойлова Анжелика Владимировна

Работа над уравнениями в начальной школе.

Большую трудность для младшего школьного возраста представляет умение решать уравнения. Изучение уравнений в начальной школе носит пропедевтический характер. Поэтому очень важно подготовить детей в начальной школе к более глубокому изучению уравнений в старших классах. В начальной школе в процессе работы над уравнением закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируется умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.

Изучение уравнений начинается с подготовительного этапа уже в 1 классе, когда дети, действуя с предметами, решают такие «задачи»:

Затем учащиеся переходят к действиям над числами и выполняют задания, связанные с нахождением неизвестного числа в «окошке», например:

Дети находят число либо подбором, либо на основе знаний состава числа. На данном этапе учителю необходимо включать в устные упражнения следующие задания:

— Сколько надо вычесть из 3, чтобы получилось 2?

— Сколько надо прибавить к 2, чтобы получилось 4?

На втором этапе учащиеся знакомятся с понятиями «уравнение» и «корень уравнения». На протяжении нескольких уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. Названия компонентов арифметических действий были введены в речевую практику учащихся и использовались для чтения равенств и выражений, пока правило нахождения неизвестного компонента в уравнениях не заучивается. Уравнения решаются на основе взаимосвязи между частью и целым. При изучении данной темы дети должны научиться находить в уравнениях компоненты,

соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, уменьшаемое, разность). При решении уравнений детям нужно будет вспомнить лишь два известных правила:

— Целое равно сумме частей.

— Чтобы найти часть, надо из целого вычесть другую часть.

Эту работу облегчает графическое обозначение части ______ и целого , а также понимание того, что целое – это большее число.

Для того чтобы облегчить работу над формированием навыка решения уравнений, можно проводить в классе следующую работу.

  1. Составление и решение уравнений по схеме.

2. Составление и решение уравнений с помощью модели числа.

— Замените модели числами:

3. Уравнения с буквами.

— Как из волка получить вола ?

4. Составление и решение уравнений с помощью числового луча.

5. Выполни проверку и найди ошибку.

Дети решают: 24 + 8 = 16

6.Составиьуравнения с числами Х, 4, 10 и реши их.

Х + 4 = 10; 10 – Х = 4; Х – 10 = 4 и т.п.

7. Из данных уравнений реши те, где Х находится сложением.

Х +16 = 20; Х -18 = 30; 29 – Х = 19

8. Рассмотри решение уравнения и вставь соответствующий знак.

К концу изучения темы дети учатся комментировать уравнения через компоненты действий. Работа строится следующим образом:

1) читаю уравнение;

2) нахожу известные и неизвестные компоненты (части и целое);

3) применяю правило (по нахождению части или целого);

4) нахожу, чему равен Х;

5) комментирую через компоненты действий.

Следующий этап – решение уравнений вида: а ∙ Х = в; а : Х = в; Х : а = в .

Уравнения этого вида решаются на основе взаимосвязи между площадью прямоугольника и его сторонами. Поэтому изменяется и графическое обозначение компонентов уравнения:

— площадь прямоугольника, а _____ — его стороны. Здесь важно понять то, что обучение решению и комментированию уравнений ведется по определенной схеме:

1 этап: Решение с одновременным комментированием правил нахождения площади и его сторон. Например, Х : 2 = 5 ( Х – площадь прямоугольника, 2 и 5 – его стороны).

Х = 2 ∙ 5 (чтобы найти площадь прямоугольника, надо перемножить его стороны)

2 этап: Решение уравнений с комментированием(через площадь прямоугольника и его стороны).

Комментирование через компоненты действий после решения уравнения.

Для отработки навыков решения уравнений на умножение и деление можно использовать следующие упражнения.

1. Выполни проверку и найди ошибку.

Дети решают: 2 : 2 = 4

2. Проанализируй решение уравнения и найди ошибку.

Ошибки: 1) 9 – это площадь, на целое, ее надо обозначить прямоугольником;

2) Х – это сторона, надо площадь разделить на другую сторону.

3. Составь уравнения с числами 3, Х, 12 и реши их.

Дети составляют: 12 : Х = 3; 3 ∙ Х = 12 и т.п.

4. Изданных уравнений реши те, которые решаются делением.

Х ∙ 2 = 6; Х : 4 = 16; 12 : Х = 4

5. Рассмотри решение уравнений и вставь соответствующий знак в запись уравнения.

6. Составь и реши уравнение:

— Какое число надо умножить на пять, чтобы получилось 25?

Х ∙ 3 = 15; Х : 4 = 5; 16 : Х = 2

— Какое уравнение лишнее? Объясни свой выбор.

— первое уравнение – Х равен нечетному числу;

— второе уравнение – Х находим умножением;

— третье уравнение – неизвестен второй компонент и т.п.

Последний этап при работе с уравнениями в начальной школе – знакомство учащихся с составными уравнениями. Решение таких уравнений строится на качественном анализе выражения, стоящего в левой части уравнения: какие действия указаны в выражении, какое действие выполняется последним, как читается запись этого выражения, какому компоненту этого действия принадлежит неизвестное число и т.п. К этому времени учащиеся должны твердо овладеть следующими умениями:

— решение простых уравнений,

— анализ решений уравнений по компонентам действий,

— чтение записи выражений в два – три действия,

— порядок выполнения действий в выражениях со скобками и без них.

На данном этапе дети должны понимать, что в записи уравнений в качестве неизвестного числа могут использоваться различные буквы латинского алфавита, например: К + 4 = 3; Р – 3 = 8; Z : 7 = 6 и т.п.

Запись решения уравнений сопровождается словесным описанием выполняемых действий. Для выработки правильной математической речи и навыков решения первых уравнений данного вида необходимо использовать таблицы с образцами решений. Но так как дети уже с 1-го класса знакомы с записью различных алгоритмов, то можно использовать только алгоритм решения уравнений, по которому дети и анализируют уравнения.

Видео:Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать

Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?

Тестовое задание по дисциплине: «Методика преподавания математики в начальной школе»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Негосударственное образовательное учреждение

высшего профессионального образования

«Московский институт современного академического образования»

Федеральный институт повышения квалификации и переподготовки

Факультет дополнительного профессионального образования

«Методика преподавания математики в начальной школе»

слушатель факультета ДПО

г. Москва, 2016 г.

Найдите один неправильный ответ, а в случае его отсутствия

укажите: «Неправильного ответа нет».

А 1. Задачами дочислового периода являются:

1) выявление уровня дошкольной математической подготовки;

2) уточнение и расширение математических представлений детей;

3) развитие познавательных процессов;

4) специальная подготовка к введению понятия «число»;

5) формирование учебной деятельности;

6) неправильного ответа нет.

А 2. Подготовка младших школьников к изучению чисел ведется по следующим направлениям:

1) обучение счету;

2) уточнение представлений о количественном и порядковом значении числа;

3) обучение сравнению двух множеств по количеству элементов;

4) практическое знакомство с операциями объединения и дополнения конечных множеств;

5) формирование умения решать задачи на нахождение суммы, на нахождение остатка;

6) уточнение пространственных представлений.

А 3. С целью развития у детей мыслительных действий в период дочисловой подготовки предлагаются специальные упражнения:

1) выделение признаков сходства и различия предметов, геометрических фигур и др.;

2) счет предметов по указанному общему для них признаку;

3) выделение общего признака у всех рассматриваемых предметов;

4) классификация предметов по цвету, размеру, форме, назначению;

5) игры «Найди лишнее» и «Чего не хватает?»;

6) неправильного ответа нет.

А 4. С целью подготовки детей к написанию цифр предлагается система упражнений:

1) обведение контуров; 2) прописывание некоторых элементов цифр.

3) раскрашивание и штриховка; 4) рисование «бордюров»;

5) составление из геометрических фигур «рисунков» знакомых объектов, например, снеговика, домика и т.п.;

6) обведение в тетради одной или нескольких клеточек по образцу;

А 5. Подготовкой к операции счета являются упражнения видов:

1) заучивание считалок;

2) составление простейших числовых выражений по иллюстрациям;

3) разбиение множества на два взаимно дополняющих подмножества, например, красные и не красные, слева и справа и т.п.;

4) практическое выполнение объединения конечных множеств;

5) выделение общего свойства предметов из данного множества;

6) неправильного ответа нет.

А 6. Для формирования навыка счета необходимо выполнение учащимися достаточного количества разнообразных упражнений, отличительными признаками которых являются:

1) характеристическое свойство множества предметов, которые надо сосчитать;

2) пространственное размещение этих предметов (линейное, по замкнутому контуру, по иным конфигурациям);

3) опора на различные органы чувств (визуально, на слух, на ощупь);

4) опора на представление (без непосредственного восприятия) множества, элементы которого сосчитываются;

5) единицы счета (по одному, парами и т.п.);

6) неправильного ответа нет.

А 7. Формированию умения считать способствуют упражнения следующих видов:

1) сколько учеников в классе; 2) сколько колес у автомобиля;

3) сколько будет 3 плюс 2; 4) сколько хлопков сделал учитель;

5) сколько раз присел Коля; 6) сколько пар тетрадей в стопке .

А 8. При обучении счету учителю необходимо обращать внимание учащихся на строгое соблюдение следующих требований:

1) счет вести слева направо;

2) нельзя пропускать предметы;

3) нельзя один и тот же предмет сосчитывать более одного раза;

4) счет начинать с числа «один»;

5) далее называть все числа по порядку;

6) ответом на вопрос «Сколько?» является последнее названное при счете число.

А 9. При обучении сравнению множеств учащимся предлагается система упражнений постепенно усложняющихся видов:

1) множества располагаются так, чтобы каждый элемент второго множества оказался под одним элементом первого множества;

2) элементы обоих множеств располагаются линейно, но без очевидного разбиения их на пары;

3) элементы обоих множеств располагаются линейно, но вперемешку (например, круги и квадраты кладутся в каждом из двух рядов);

4) элементы одного из множеств раскладываются линейно, а другого по произвольной конфигурации;

5) элементы обоих множеств располагаются в виде неупорядоченных групп;

6) неправильного ответа нет.

А 10. Упражнения на сравнение и на уравнивание двух множеств по количеству составляющих их элементов являются наглядно-действенной основой для осознания детьми:

1) конкретного смысла отношений «равно», «больше», «меньше»;

2) понятий «числовое равенство» и «числовое неравенство»;

3) конкретного смысла отношений «больше на» и «меньше на»;

4) взаимосвязи отношений «больше» и «меньше»;

5) конкретного смысла вопросов «На сколько больше?», «На сколько меньше?» и их взаимосвязи;

6) неправильного ответа нет.

А 11. Упражнения в сравнении двух множеств выполняют следующие дидактические функции:

1) подготовка к введению понятия натурального числа;

2) формирование навыка счета;

3) запоминание некоторых табличных случаев сложения;

4) подготовка к решению арифметических задач с разностными отношениями между числами;

5) обучение простейшим предматематическим доказательствам утверждений вида: «Яблок больше, чем груш, потому что …..»;

6) неправильного ответа нет.

А 12. При планировании организационных форм работы первоклассников на уроке учитель предусматривает:

1) практические упражнения с использованием разнообразного дидактического материала;

2) сочетание фронтальной работы с аналогичной индивидуальной;

3) своевременную смену видов деятельности учащихся;

4) широкое использование игр, игровых ситуаций, занимательных заданий, разнообразных средств наглядности;

5) более свободное поведение детей; 6) неправильного ответа нет.

Среди предложенных вариантов ответов укажите один правильный .

Б 1. В соответствии с программными требованиями младшие школьники должны усвоить алгебраические понятия (термины) на уровне:

1) узнавания объектов изучения, обозначенных терминами;

2) запоминания терминов;

3) формального определения понятия;

4) понимания отличительных признаков понятия и правильного применения в своей математической речи соответствующих терминов;

5) включения в систему родственных понятий;

6) правильного ответа нет.

Б 2. Правила порядка выполнения арифметических действий в сложных выражениях – это:

1) утверждение, которое нужно доказывать;

2) следствие законов арифметических действий;

3) общепринятое соглашение, договоренность;

4) вывод, полученный путем наблюдений и обобщения;

5) требование программы по математике;

6) правильного ответа нет.

Б 3. Выражение а – в ∙ с можно прочитать:

1) а минус в умножить на с ;

2) из числа а вычесть число в и умножить на число с ;

3) разность чисел а и в умножить на с ;

4) число а уменьшить на произведение чисел в и с ;

5) число а уменьшить на в и увеличить в с раз;

6) правильного ответа нет.

Б 4. Впервые с числовыми равенствами и неравенствами учащиеся начальных классов встречаются при сравнении:

1) двух предметных множеств по их численности, когда выполняется соответствующая запись на математическом языке;

2) двух однозначных чисел;

3) суммы и числа;

4) двух сумм; 5) суммы и разности; 6) двух разностей.

Б 5. С ошибкой выполнено преобразование выражения:

1) 18 · 3 = (10 + 8) · 3 = 30 + 24 = 54 ;

2) 45 + 38 = (40 +5) + (30 + 8) = 40 + 30 = 70 + 13 = 83;

3) 84 – 7 = 84 – (4 + 3) = 80 – 3 = 77;

4) 42 : 14 = 42 : (7 ∙ 2) = (42 : 7) : 2 = 6 : 2 = 3;

5) 4600 : 200 = 4600 : (2 · 100) = (4600 : 100) : 2 = 46 : 2 = 23;

6) правильного ответа нет.

Б 6. С ошибкой выполнено преобразование выражения:

1) а : (в : с) = (а : в) · с ;

2) 480 : (4 · 10) = 48 : 4 = 12;

3) (а + в) – с = (а – с) + в = а + (в – с) ;

4) 19 – 5 = (10 + 9) – 5 = 10 + (9 – 5) = 10 + 4 = 14;

5) 19 – 5 = (10 + 9) – 5 = (10 – 5) + 9 = 5 + 9 = 14;

6) правильного ответа нет.

Б 7. Переменная – это:

1) буква латинского алфавита;

2) место для заполнения;

6) правильного ответа нет.

Б 8. Первый способ решения уравнений, который применяют учащиеся начальных классов, это:

1) уравнивание двух множеств предметов;

3) с помощью графов;

4) сравнение двух выражений с переменной;

5) использование правил нахождения неизвестных компонентов арифметических действий;

6) равносильные преобразования заданного уравнения.

Б 9. Для ознакомления младших школьников с правилами а · 1 = а и а · 0 = 0 используется метод:

1) неполная индукция; 2) аналогия; 3) дедукция;

4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.

Б 10. Ведущим методом ознакомления младших школьников с правилами а : 1 = а и а : а = 1 является:

1) неполная индукция; 2) аналогия; 3) дедукция;

4) эвристическая беседа; 5) сообщение учителя ; 6) наблюдение.

Б 11. Вывод правил а : а = 1 и а : 1 = а в начальных классах осуществляется с опорой на:

1) действия с предметными множествами;

2) конкретный смысл действия деления;

3) взаимосвязь деления с вычитанием;

4) взаимосвязь деления с умножением;

5) наблюдение нескольких частных случаев вида 6 : 6 = 1 и 6 : 1 = 6;

6) правильного ответа нет.

Б 12. Правило 0 · а = 0 в начальных классах выводится с опорой на:

1) переместительный закон умножения;

2) взаимосвязь умножения со сложением;

3) взаимосвязь умножения с делением;

4) действия с предметными множествами;

5) правило «На нуль делить нельзя»;

6) правильного ответа нет.

Б 13. Самым удобным примером – помощником для решения уравнений вида а – х = в является:

1) 5 – х = 3; 2) 15 – 12 = 3; 3) 18 – 9 = 9;

4) 18 – 6 = 12; 5) 7 – ٱ = 1; 6) 5 – 2 = 3.

Б 14. Учащиеся начальных классов реже всего ошибаются при решении уравнений вида:

1) а + х = в ; 2) х – а = в ; 3) а – х = в ;

Заполни пропуски, если они есть в заданиях.

В 1. Цифра – это знак . для обозначения числа на письме.

В 2. Натуральное число – это общее свойство . . . класса конечных равномощных множеств.

В 3. Разряд – это . место . . , занимаемое цифрой в записи числа.

В 4. Класс – это . совокупность . . трех последовательных разрядов, начиная с разряда единиц.

В 5. С нумерационным понятием «разряд» учащиеся впервые встречаются при изучении чисел . первого десятка . . .

В 6. С понятием «класс» учащиеся знакомятся в концентре . тысяча . . .

В 7. В концентре «Тысяча» учащиеся знакомятся с новой счетной единицей . . сотней . .

В 8. Какое нумерационное понятие формируется через систему упражнений:

1) назвать число, следующее за данным или предшествующее ему;

2) продолжить ряд чисел;

3) поставить нужный знак: 4 * 5, 8 * 10;

4) вычислить 2 + 1; 5 + 1, 6 – 1;

5) вставить пропущенные числа;

6) расположить заданные числа в порядке следования? натуральное число

В 9. Из порядковых номеров вариантов ответов в заданиях А6 и В9 образуйте и запишите упорядоченные пары, в которых первая координата указывает источник получения натуральных чисел, а вторая обозначает его соответствующую функцию:

1) количественная; 2) порядковая;

3) операторная; 4) результат измерения величины.

В 10. С операторной функцией натурального числа учащиеся впервые знакомятся при изучении темы . умножение . . .

В 11. При изучении нумерации двузначных чисел полоску длиной 1 дм можно использовать в качестве . модели десятка . . .

В 12. При изучении нумерации трехзначных чисел 1 кв. дм можно использовать в качестве . . . . сотни

В 13. Модели разрядных единиц могут быть самыми различными по внешнему виду, но всегда остается неизменным . способ . . их образования.

В 14. Упражнения в счете большой совокупности предметов сначала по одному, а потом другими разрядными единицами способствуют пониманию сущности принципа . поклассового объединения разрядов . . .

В 15. При выполнении заданий вида: «Из чисел 60, 8 и 68 составьте четыре примера на сложение и вычитание» учащиеся закрепляют знания о . . разрядном составе числа . .

В 16. Прием закрывания цифр низших разрядов используется для выделения в многозначном числе количества единиц в самом высшем разряде

В 17. При выполнении заданий вида: «С помощью цифр 3, 7, 1 запишите всевозможные двузначные числа» учащиеся закрепляют знания о принципе поместного значения цифр . . . .

В 18. В частном чисел 32018 и 74 три цифры, потому что первое неполное делимое . 320 сотен . . .

В 19. Запишите число, в котором 10 единиц, 10 десятков, 10 сотен и 10 тысяч 11110 .

В 20. Запишите число, в котором 11 единиц, 11 десятков и 11 сотен 1221 .

📽️ Видео

Методика обучения письму и чтению в начальной школе | Видеолекции | ИнфоурокСкачать

Методика обучения письму и чтению в начальной школе | Видеолекции | Инфоурок

Математика в начальной школе: основы решения уравненийСкачать

Математика в начальной школе: основы решения уравнений

Мастер-класс учителя начальных классов Елкиной Дарии НиколаевныСкачать

Мастер-класс учителя начальных классов Елкиной Дарии Николаевны

Как сделать урок математики интересным? Урок математики в начальной школе. Школа молодого учителяСкачать

Как сделать урок математики интересным? Урок математики в начальной школе. Школа молодого учителя

Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Задачи по математике 1 класс. Как научиться решать задачи в 1 классе?Скачать

Задачи по математике 1 класс. Как научиться решать задачи в 1 классе?

Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика ШаталоваСкачать

Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика Шаталова

Математика базовая и математика углубленная: методика обучения решению уравненийСкачать

Математика базовая и математика углубленная: методика обучения решению уравнений

Задачи на движение. Учимся решать задачи на движение. Способы решения задач на движение.Скачать

Задачи на движение. Учимся решать задачи на движение. Способы решения задач на движение.

Как проверяют учеников перед ЕНТСкачать

Как проверяют учеников перед ЕНТ

Как проводить опрос на уроке? Школа молодого учителя. Советы молодым учителям.Скачать

Как проводить опрос на уроке? Школа молодого учителя. Советы молодым учителям.

Краткая запись задачи. Как сделать краткую запись к задаче?Скачать

Краткая запись задачи. Как сделать краткую запись к задаче?

Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.Скачать

Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.
Поделиться или сохранить к себе: