В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые в полярной системе координат: табуляция функции, построение графика, переход к уравнению в декартовой системе координат т.п.
Основные этапы при работе с кривой, заданной в полярной системе координат, такие:
- 1. Построить полярную систему координат (изобразить полюс, полярную ось и угловые направления). Обычно строят вспомогательные лучи через $pi/6$ или $pi/8$ радиан, для большинства кривых этих точек (получается от $0$ до $2pi$ помещается 12 или 16 значений) вполне достаточно.
- 2. Табулируем кривую: берем последовательно все углы $phi$ (см. выше): $0$, $pi/8$, $pi/4$, $3pi/8$. и в каждой точке вычисляем значение $rho(phi)$. Заносим значения в таблицу.
- 3. Берем начерченную в первом пункте полярную систему координат и наносим точки. На полярной оси отмеряем значние $rho(0)$, на луче $pi/8$ — $rho(pi/8)$ и так далее.
- 4. Соединяем все точки плавной линией. Получается искомая кривая. Для проверки правильности можно построить дополнительно график с помощью онлайн-сервисов.
- 5. Если требуется найти уравнение кривой в декартовой системе координат, подставляем подходящие формулы $rho=sqrt$, $x=rhocos phi$, $y=rhosin phi$ и преобразуем.
Более подробно — в примерах ниже. Удачного изучения!
Видео:Построение кривой в полярной системе координатСкачать
Полярная система координат: решения онлайн
Задача 1. Построить следующие кривые в полярной системе координат: Лемниската Бернулли $rho^2=2cos 2phi$ (полюс помещен в точку О).
Задача 2. Построить по точкам кривую, заданную уравнением в полярной системе координат $rho=2sin 2phi$. Найти уравнение кривой в прямоугольной системе координат, начало которой совмещено с полюсом, а положительная полуось $Ox$ с полярной осью.
Задача 3. Дана линия своим уравнением в полярной системе координат $r=8 sin phi$. Требуется:
1) построить линию по точкам, давая $phi$ значения через $pi/6$, начиная с 0 до $2pi$.
2) Найти уравнение этой линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью.
Задача 4. Линия задана уравнением $r=18/(4+5cos phi)$ в полярной системе координат. Требуется:
Построить линию по точкам, начиная от 0 до $2pi$ и придавая $phi$ значения через промежуток $pi/8$.
Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.
Назвать линию, найти координаты фокусов и эксцентриситет.
Видео:Полярная система координатСкачать
Построить график в полярных координатах на плоскости
Данный калькулятор поможет построить график и кривые на плоскости в полярных координатах.
Полярная система координат — двухмерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом.
Полярная система координат задаётся лучом, который называют нулевым лучом, или полярной осью. Точка, из которой выходит этот луч, называется началом координат, или полюсом.
Примеры уравнений кривых в полярных координатах:
R=2*(1-cos theta) — кардиоида;
R=2*sin(4*theta) — полярная роза;
R=2+sin(3* theta) — трохоида;
R=9/(4-5*cos theta) — гипербола.
Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
Задача 31542 Перейти в уравнение кривой к полярным.
Условие
Перейти в уравнение кривой к полярным координатам и построить кривую
Решение
x=r*cos φ
y=r*sin φ
x^2+y^2=r^2
Подставляем в данное уравнение:
(r^2)^2=10r^3cos^3 φ
r=10cos^3 φ
cos^3φ >0 в четвертой и первой четвертях
φ =-π/2⇒ r=10*0^3=0 Откладываем на луче -π/2 0, т. е получаем точку (0;0) на плоскости
φ =-π/3⇒ r=10*(1/2)^3=10/8=5/4
φ =-π/4⇒ r=10*(1/2sqrt(2))≈
φ =-π/6⇒ r=10*(3sqrt(3)/8)≈
φ =0⇒ r=10*1=10 Точка (10;0) на плоскости хОу
φ =π/6⇒ r=10*(3sqrt(3)/8)≈
φ =π/4⇒ r=10*(1/2sqrt(2))≈
φ =π/3⇒ r=10*(1/2)^3=10/8=5/4
φ =π/2⇒ r=0*0^3=0
График см рис.
Можно подробнее о построении графика, пожалуйста Я просто никак понять не могу =(
Полярная система координат задается лучом и начало О. На луче откладывают только положительные значения r. Луч вращается вокруг точки О на 360 градусов. ( или на 180 по часовой и на 180 против). Берем первый луч, Он образует угол 0^(o) cos0^(o)=1 r=10*cos0^(0)=10 Откладываем 10 единичных отрезков на луче, который совпадает с осью Ох Второй угол(пи/8) Находим косинус (пи/8) возводим в куб и умножаем на 10. Получаем значение, которое и откладываем на этом луче ( см луч, который подписан как пи/8)
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Перейти в уравнение кривой к полярным координатам и построить кривую
Построим график функции в полярных координатах r=r(φ),
где 0 Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x|) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x exp(x) Функция — экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x ctg(x) Функция — Котангенс от x arcctg(x) Функция — Арккотангенс от x arcctgh(x) Функция — Гиперболический арккотангенс от x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x gamma(x) Гамма-функция LambertW(x) Функция Ламберта x! или factorial(x) Факториал от x DiracDelta(x) Дельта-функция Дирака Heaviside(x) Функция Хевисайда Интегральные функции: Si(x) Интегральный синус от x Ci(x) Интегральный косинус от x Shi(x) Интегральный гиперболический синус от x Chi(x) Интегральный гиперболический косинус от x
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
© Контрольная работа РУ — калькуляторы онлайн
💡 Видео
Видеоурок "Полярная система координат"Скачать
Занятие 01. Часть 3. Полярная система координатСкачать
Полярная система координатСкачать
§30 Уравнения кривых второго порядка в полярных координатахСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Поворот и параллельный перенос координатных осей. ЭллипсСкачать
Полярная система координат.Скачать
Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать
Площадь фигуры, заданной в полярной системе координатСкачать
53. Приведение общего уравнения кривой к каноническому видуСкачать
Полярные координаты. Полярное уравнение эллипса.Скачать
Скорость и ускорение точки в полярных координатахСкачать
Глаза гипножабы и площадь фигур в полярной системе координатСкачать
Кривые, заданные параметрическиСкачать
Вычислить двойной интеграл, перейдя к полярным координатамСкачать
Перейти к полярным координатам в двойном интегралеСкачать