Перевод уравнения прямой из общего вида в канонический

Каноническое уравнение прямой на плоскости: теория, примеры, решение задач

Прямую линию в прямоугольной системе координат можно задать с помощью канонического уравнения. В этой статье мы расскажем, что это такое, приведем примеры, рассмотрим связи канонических уравнений с другими типами уравнений для этой прямой. В последнем пункте мы разберем несколько задач на закрепление темы.

Видео:Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Понятие канонического уравнения прямой

Допустим, что у нас есть декартова (прямоугольная) система координат, в которой задана прямая. Нам известны координаты произвольно взятой точки этой прямой M 1 ( x 1 , y 1 ) , а также ее направляющего вектора a → = ( a x , a y ) . Попробуем составить уравнение, которое описывало бы эту прямую.

Возьмем плавающую точку M ( x , y ) . Тогда вектор M 1 M → можно считать направляющим для исходной прямой. Его координаты будут равны x — x 1 , y — y 1 (если нужно, повторите материал о том, как правильно вычислять координаты вектора с помощью координат отдельных его точек).

Множество произвольно взятых точек M ( x , y ) будут определять нужную нам прямую с направляющим вектором a → = ( a x , a y ) только в одном случае – если векторы M 1 M → и a → = ( a x , a y ) будут коллинеарны по отношению друг к другу. Посмотрите на картинку:

Перевод уравнения прямой из общего вида в канонический

Таким образом, мы можем сформулировать необходимое и достаточное коллинеарности этих двух векторов:

M 1 M → = λ · a → , λ ∈ R

Если преобразовать полученное равенство в координатную форму, то мы получим:

x — x 1 = λ · a x y — y 1 = λ · a y

При условии, что a x ≠ 0 и a y ≠ 0 , получим:

x — x 1 = λ · a x y — y 1 = λ · a y ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y

Итог наших преобразований и будет каноническим уравнением прямой на плоскости. Запись вида x — x 1 a x = y — y 1 a y также называют уравнением прямой в каноническом виде.

Таким образом, с помощью уравнения x — x 1 a x = y — y 1 a y можно задать в прямоугольной системе координат на плоскости прямую, которая имеет направляющий вектор a → = ( a x , a y ) и проходит через точку M 1 ( x 1 , y 1 ) .

Примером уравнения подобного типа является, например, x — 2 3 = y — 3 1 . Прямая, которая задана с его помощью, проходит через M 1 ( 2 , 3 ) и имеет направляющий вектор a → = 3 , 1 . Ее можно увидеть на рисунке:

Перевод уравнения прямой из общего вида в канонический

Из определения канонического уравнения нужно сделать несколько важных выводов. Вот они:

1. Если прямая, имеющая направляющий вектор a → = ( a x , a y ) , проходит через две точки – M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) , то уравнение для нее может быть записано как в виде x — x 1 a x = y — y 1 a y , так и x — x 2 a x = y — y 2 a y .

2. Если заданная прямая имеет направляющий вектор с координатами a → = ( a x , a y ) , то множество всех ее векторов можно обозначить как μ · a → = ( μ · a x , μ · a y ) , μ ∈ R , μ ≠ 0 . Таким образом, любое уравнение прямой в каноническом виде x — x 1 μ · a x = y — y 1 μ · a y будет соответствовать этой прямой.

Разберем важный пример задачи на нахождение канонического уравнения.

В прямоугольной системе координат на плоскости задана прямая, которая проходит через точку M 1 ( 2 , — 4 ) и имеет направляющий вектор с координатами a → = ( 1 , — 3 ) . Запишите каноническое уравнение, описывающее данную прямую.

Решение

Для начала вспомним общий вид нужного нам канонического уравнения – x — x 1 a x = y — y 1 a y . Подставим в него имеющиеся значения x 1 = 2 , y 1 = — 4 , a x = 1 , a y = — 3 и подсчитаем:

x — x 1 a x = y — y 1 a y ⇔ x — 2 1 = y — ( — 4 ) — 3 ⇔ x — 2 1 = y + 4 — 3

Получившееся в итоге равенство и будет нужным ответом.

Ответ: x — 2 1 = y + 4 — 3

Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому виду

Канонические уравнения прямой на плоскости с a x или a y , равными нулю

Если значение хотя бы одной переменной a является нулевым, то уравнение плоскости используют в первоначальном виде. Сразу две переменные нулевыми не могут быть по определению, поскольку нулевой вектор не бывает направляющим. В таком случае мы можем считать запись x — x 1 a x = y — y 1 a y условной и понимать ее как равенство a y ( x — x 1 ) = a x ( y — y 1 ) .

Разберем случаи канонических уравнений на плоскости с одним нулевым a более подробно. Допустим, что x — x 1 0 = y — y 1 a y при a x = 0 , а исходная прямая будет проходить через M 1 ( x 1 , y 1 ) . В таком случае она является параллельной оси ординат (если x 1 = 0 , то она будет с ней совпадать). Докажем это утверждение.

Для этой прямой вектор a → = ( 0 , a y ) будет считаться направляющим. Этот вектор является коллинеарным по отношению к координатному вектору j → = ( 0 , 1 ) .

Если же нулевым является значение второго параметра, то есть a y = 0 , то мы получаем равенство вида x — x 1 a x = y — y 1 0 . Это уравнение описывает прямую, проходящую через M 1 ( x 1 , y 1 ) , которая расположена параллельно оси абсцисс. Это утверждение верно, поскольку a → = ( a x , 0 ) является для этой прямой направляющим вектором, а он в свою очередь является коллинеарным по отношению к координатному вектору i → = ( 1 , 0 ) .

Проиллюстрируем два частных случая канонического уравнения, описанные выше:

Перевод уравнения прямой из общего вида в канонический

На плоскости задана прямая, параллельная оси O y . Известно, что она проходит через точку M 1 2 3 , — 1 7 . Запишите каноническое уравнение для нее.

Решение

Если прямая по отношению оси ординат является параллельной, то мы можем взять координатный вектор j → = ( 0 , 1 ) в качестве направляющего для нее. В таком случае искомое уравнение выглядит следующим образом:

x — 2 3 0 = y — — 1 7 1 ⇔ x — 2 3 0 = y + 1 7 1

Ответ: x — 2 3 0 = y + 1 7 1

На рисунке изображена прямая. Запишите ее каноническое уравнение.

Перевод уравнения прямой из общего вида в канонический

Решение

Мы видим, что исходная прямая проходит параллельно оси O x через точку M 1 ( 0 , 3 ) . Мы берем координатный вектор i → = ( 1 , 0 ) в качестве направляющего. Теперь у нас есть все данные, чтобы записать нужное уравнение.

x — 0 1 = y — 3 0 ⇔ x 1 = y — 3 0

Ответ: x 1 = y — 3 0

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Преобразование канонического уравнения прямой в другие виды уравнений

Мы уже выяснили, что в прямоугольной системе координат на плоскости заданную прямую можно описать с помощью канонического уравнения. Оно удобно для решения многих задач, однако иногда лучше производить вычисления с помощью другого типа уравнений. Сейчас мы покажем, как преобразовать каноническое уравнение в другие виды, если это требуется по ходу решения.

Стандартной форме записи канонического уравнения x — x 1 a x = y — y 1 a y можно поставить в соответствие систему параметрических уравнений на плоскости x = x 1 + a x · λ y = y 1 + a y · λ . Чтобы преобразовать один вид уравнения в другой, нам надо приравнять правую и левую часть исходного равенства к параметру λ . После этого надо выполнить разрешение получившихся равенств относительно переменных x и y :

x — x 1 a x = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y = λ ⇔ ⇔ x — x 1 a x = λ y — y 1 a y = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ

Покажем на примере, как именно выполняется это действие с конкретными числами.

У нас есть прямая, заданная на плоскости с помощью канонического уравнения x + 2 3 = y — 1 11 . Запишите параметрические уравнения исходной прямой.

Решение

Сначала поставим знак равенства между отдельными частями уравнения и переменной λ и получим x + 2 3 = λ y — 1 11 = λ .

Далее можно перейти к формулированию необходимых параметрических уравнений:

x + 2 3 = λ y — 1 11 = λ ⇔ x + 2 = 3 · λ y — 1 = 11 · λ ⇔ x = — 2 + 3 · λ y = 1 + 11 · λ

Ответ: x = — 2 + 3 · λ y = 1 + 11 · λ

Из канонического уравнения можно получить не только параметрические, но и общие уравнения прямой. Вспомним понятие пропорции: запись a b = c d можно представить в виде a · d = b · c с сохранением смысла. Значит, что x — x 1 a x = y — y 1 a y ⇔ a y ( x — x 1 ) = a x ( y — y 1 ) ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 .

Это и есть общее уравнение прямой. Это станет более очевидно, если мы добавим в него значения параметров a y = A , — a x = B , — a y x 1 + a x y 1 = C .

Прямая на плоскости описана с помощью канонического уравнения x — 1 2 = y + 4 0 . Вычислите общее уравнение этой прямой.

Решение

Делаем указанные выше действия по порядку.

x — 1 2 = y + 4 0 ⇔ 0 · ( x — 1 ) = 2 · ( y + 4 ) ⇔ y + 4 = 0

Ответ: y + 4 = 0 .

Также из канонического уравнения мы можем получить уравнение прямой в отрезках, прямой с угловым коэффициентом или нормальное уравнение прямой, но это действие выполняется в два шага: первым делом мы получаем общее уравнение прямой, а вторым – преобразуем его в уравнение указанного типа. Разберем пример такой задачи.

На плоскости задана прямая с помощью уравнения x + 3 3 = y — 2 2 . Запишите уравнение этой же прямой в отрезках.

Решение

Для начала преобразуем исходное каноническое уравнение в общее уравнение прямой.

x + 3 3 = y — 2 2 ⇔ 2 · ( x + 3 ) = 3 · ( y — 2 ) ⇔ 2 x — 3 y + 6 + 2 3 = 0

Далее переходим к формулировке уравнения прямой в отрезках.

2 x — 3 y + 6 + 2 3 = 0 ⇔ 2 x — 3 y = — 6 + 2 3 ⇔ ⇔ 2 — ( 6 + 2 3 ) x — 3 — ( 6 + 2 3 ) y = 1 ⇔ x — 6 + 2 3 2 + y 6 + 2 3 3 = 1 ⇔ x — 3 + 3 + y 3 3 + 2 = 1

Ответ: x — 3 + 3 + y 3 3 + 2 = 1

Достаточно легко решить и задачу, обратную этой, т.е. привести уравнение прямой на плоскости обратно к каноническому. Допустим, у нас есть общее уравнение прямой в стандартной формулировке – A x + B y + C = 0 . При условии A ≠ 0 мы можем перенести B y вправо с противоположным знаком. Получим A x + C = — B y . Теперь выносим A за скобки и преобразуем равенство так:

Получившееся уравнение мы записываем в виде пропорции: x + C A — B = y A .

У нас получилось нужное нам каноническое уравнение прямой на плоскости.

А как сделать преобразование, если B ≠ 0 ? Переносим все слагаемые, кроме A x , вправо с противоположными знаками. Получаем, что A x = — B y — C . Выносим — B за скобки:

Формируем пропорцию: x — B = y + C B A

Есть общее уравнение прямой x + 3 y — 1 = 0 . Перепишите его в каноническом виде.

Решение

Оставим с левой стороны только одну переменную x . Получим:

Теперь вынесем — 3 за скобки: x = — 3 y — 1 3 . Преобразуем равенство в пропорцию и получим необходимый ответ:

Ответ: x — 3 = y — 1 3 1

Таким же образом мы поступаем, если нам нужно привести к каноническому виду уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом.

Наиболее простая задача – переход от параметрических уравнений к каноническим. Нужно просто выразить параметр λ в системе уравнений x = x 1 + a x · λ y = y 1 + a y · λ и приравнять обе части равенств. Схема решения выглядит так:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y

Если значение одного из параметров a будет нулевым, мы поступаем точно таким же образом.

Прямая на плоскости описана с помощью системы параметрических уравнений x = 3 + 0 · λ y = — 2 — 4 · λ . Запишите каноническое уравнение для этой прямой.

Решение

Для начала преобразуем исходные уравнения в систему x = 3 + 0 · λ y = — 2 — 4 · λ . Следующим шагом будет выражение параметра в каждом уравнении:

x = 3 + 0 · λ y = — 2 — 4 · λ ⇔ λ = x — 3 0 λ = y + 2 — 4

Ставим знак равенства между получившимися частями и получаем нужное нам каноническое уравнение: x — 3 0 = y + 2 — 4

Ответ: x — 3 0 = y + 2 — 4

Видео:Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Как решать задачи на составление канонических уравнений

В первую очередь канонические уравнения используются для тех задач, где нужно выяснить, принадлежит ли некоторая точка заданной прямой или нет. Вспомним, что в случае, если точка лежит на прямой, ее координаты будут удовлетворять уравнению этой прямой.

На плоскости задана прямая, каноническое уравнение которой имеет вид x — 1 2 = y + 1 2 — 3 . Выясните, лежат ли на ней точки M 1 3 , — 3 1 2 и M 2 ( 5 , — 4 ) .

Решение

Для проверки принадлежности необходимо подставить координаты точки в исходное уравнение и проверить, получим ли мы в итоге верное равенство.

3 — 1 2 = — 3 1 2 + 1 2 — 2 ⇔ 1 = 1

Результат говорит нам, что точка M 1 3 , — 3 1 2 принадлежит исходной прямой.

Точно так же поступим и с координатами второй точки:

5 — 1 2 = — 4 + 1 2 — 3 ⇔ 2 = 7 6

Получившееся в итоге равенство не является верным, значит, эта точка заданной прямой не принадлежит.

Ответ: первая точка лежит на заданной прямой, а вторая нет.

Есть две точки M 1 ( 2 , 4 ) и M 2 ( — 1 , 3 ) . Будет ли прямая, которая задана в той же плоскости с помощью уравнения x — 2 0 = y — 3 2 , проходить через них?

Решение

Вспомним, что запись x — 2 0 = y — 3 2 можно понимать как 2 · ( x — 2 ) = 0 · ( y — 3 ) ⇔ x — 2 = 0 . Подставим координаты заданных точек в это равенство и проверим.

Начнем с первой точки M 1 ( 2 , 4 ) : 2 — 2 = 0 ⇔ 0 = 0

Равенство верное, значит, эта точка расположена на заданной прямой.

Подставляем данные второй точки: — 1 — 2 = 0 ⇔ — 3 = 0 .

Равенство неверное, значит, точка M 2 ( — 1 , 3 ) не лежит на исходной прямой.

Ответ: через точку M 1 ( 2 , 4 ) прямая проходит, а через M 2 ( — 1 , 3 ) нет.

Далее мы посмотрим, какие еще типичные задачи на нахождение канонического уравнения можно встретить. Возьмем примеры с разными условиями.

Наиболее простыми являются задачи на нахождение канонического уравнения прямой на плоскости, в которых уже заданы координаты некой точки, лежащей на прямой. В первой части материала мы уже приводили пример решения такой задачи.

Чуть сложнее будет найти нужное уравнение, если нам предварительно нужно будет вычислить координаты направляющего вектора исходной прямой. Чаще всего встречаются задачи, в которой нужная прямая проходит через две точки с известными координатами.

Прямая на плоскости проходит через точку M 1 ( 0 , — 3 ) и через точку M 2 ( 2 , — 2 ) . Сформулируйте для этой прямой канонической уравнение.

Решение

Eсли у нас есть координаты двух точек, то мы можем вычислить по ним координаты вектора M 1 M 2 → = 2 , 1 . По отношению к прямой, чье уравнение мы составляем, он будет направляющим вектором. После этого мы можем записать следующее:

x — 0 2 = y — ( — 3 ) 1 ⇔ x 2 = y + 3 1

Также можно использовать координаты второй точки. Тогда мы получим: x — 2 2 = y — ( — 2 ) 1 ⇔ x — 2 2 = y + 2 1

Ответ: x 2 = y + 3 1

Посмотрим, как нужно составлять канонические уравнения прямой на плоскости в том случае, если направляющий вектор этой прямой нужно вычислять исходя из параллельных или перпендикулярных ей прямых.

Известно, что точка M 1 ( 1 , 3 ) принадлежит некоторой прямой, которая параллельна второй прямой, заданной с помощью уравнения x 2 = y — 5 . Запишите каноническое уравнение первой прямой.

Решение

Для первой прямой можно определить направляющий вектор a → = 2 , — 5 . Его можно рассматривать и в качестве направляющего для второй прямой, что следует из самого определения направляющих векторов. Это позволяет нам получить всю информацию, нужную для записи искомого уравнения: x — 1 2 = y — 3 — 5

Ответ: x — 1 2 = y — 3 — 5

Через точку M 1 ( — 1 , 6 ) проходит прямая, которая является перпендикулярной другой прямой, определенной на плоскости с помощью уравнения 2 x — 4 y — 7 = 0 . Запишите каноническое уравнение первой прямой.

Решение

Из данного уравнения мы можем взять координаты нормального вектора второй прямой – 2 , 4 . Мы знаем, что этот вектор является направляющим по отношению к первой. Тогда мы можем записать искомое уравнение:

x — ( — 1 ) 2 = y — 6 4 ⇔ x + 1 1 = y — 6 2

Видео:Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать

Каноническое уравнение прямой в пространстве  Преход от общего уравнения

Общее уравнение прямой на плоскости

В данной статье мы рассмотрим общее уравнение прямой на плоскости. Приведем примеры построения общего уравнения прямой, если известны две точки этой прямой или если известна одна точка и нормальный вектор этой прямой. Представим методы преобразования уравнения в общем виде в канонический и параметрический виды.

Пусть задана произвольная декартова прямоугольная система координат Oxy. Рассмотрим уравнение первой степени или линейное уравнение:

где A, B, C − некоторые постоянные, причем хотя бы один из элементов A и B отлично от нуля.

Мы покажем, что линейное уравнение на плоскости определяет прямую. Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат на плоскости каждая прямая линия может быть задана линейным уравнением. Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат на плоскости определяет прямую линию.

Доказательство. Достаточно доказать, что прямая L определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть на плоскости задана прямая L. Выберем систему координат так, чтобы ось Ox совпадал с прямой L, а ось Oy был перпендикулярной к ней. Тогда уравнение прямой L примет следующий вид:

Все точки на прямой L будут удовлетворять линейному уравнению (2), а все точки вне этой прямой, не будут удовлетворять уравнению (2). Первая часть теоремы доказана.

Пусть задана декартова прямоугольная система координат и пусть задана линейное уравнение (1), где хотя бы один из элементов A и B отличен от нуля. Найдем геометрическое место точек, координаты которых удовлетворяют уравнению (1). Так как хотя бы один из коэффициентов A и B отличен от нуля, то уравнение (1) имеет хотя бы одно решение M(x0,y0). (Например, при A≠0, точка M0(−C/A, 0) принадлежит данному геометрическому месту точек). Подставляя эти координаты в (1) получим тождество

Ax0+By0+C=0.(3)

Вычтем из (1) тождество (3):

A(xx0)+B(yy0)=0.(4)

Очевидно, что уравнение (4) эквивалентно уравнению (1). Поэтому достаточно доказать, что (4) определяет некоторую прямую .

Поскольку мы рассматриваем декартову прямоугольную систему координат, то из равенства (4) следует, что вектор с компонентами <x−x0, y−y0> ортогонален вектору n с координатами <A,B>.

Рассмотрим некоторую прямую L, проходящую через точку M0(x0, y0) и перпендикулярной вектору n (Рис.1). Пусть точка M(x,y) принадлежит прямой L. Тогда вектор Перевод уравнения прямой из общего вида в каноническийс координатами x−x0, y−y0 перпендикулярен n и уравнение (4) удовлетворено (скалярное произведение векторов n и Перевод уравнения прямой из общего вида в каноническийравно нулю). Обратно, если точка M(x,y) не лежит на прямой L, то вектор Перевод уравнения прямой из общего вида в каноническийс координатами x−x0, y−y0 не ортогонален вектору n и уравнение (4) не удовлетворено. Теорема доказана.

Перевод уравнения прямой из общего вида в канонический

Вектор n=<A,B> называется нормальным вектором прямой L.

Замечание 1. Если два общих уравнения прямой

A1x+B1y+C1=0(5)
A2x+B2y+C2=0(6)

определяют одну и ту же прямую, то найдется такое число λ, что выпонены равенства

A2=A1λ, B2=B1λ, C2=C1λ.(7)
(A1λA2)x0+(B1λB2)x0+(C1λC2)=0.(8)

Так как выполнены первые два равенства из выражений (7), то C1λC2=0. Т.е. C2=C1λ. Замечание доказано.

Заметим, что уравнение (4) определяет уравнение прямой, проходящей через точку M0(x0, y0) и имеющий нормальный вектор n=<A,B>. Поэтому, если известен нормальный вектор прямой и точка, принадлежащая этой прямой, то можно построить общее уравнение прямой с помощью уравнения (4).

Пример 1. Прямая проходит через точку M=(4,−1) и имеет нормальный вектор n=. Построить общее уравнение прямой.

Решение. Имеем: x0=4, y0=−1, A=3, B=5. Для построения общего уравнения прямой, подставим эти значения в уравнение (4):

Упростив получим общее уравнение прямой:

Пример 2. Прямая проходит через точки M1=(−5, 2) и M2=(−2, 3). Построить общее уравнение прямой.

Решение. Вычислим вектор Перевод уравнения прямой из общего вида в канонический:

Перевод уравнения прямой из общего вида в канонический

Вектор Перевод уравнения прямой из общего вида в каноническийпараллелен прямой L и, следовательно, перпердикулярен нормальному вектору прямой L. Построим нормальный вектор прямой L, учитывая, что скалярное произведение векторов n и Перевод уравнения прямой из общего вида в каноническийравно нулю. Можем записать, например, n=.

Для построения общего уравнения прямой воспользуемся формулой (4). Подставим в (4) координаты точки M1 (можем взять также координаты точки M2) и нормального вектора n:

Упростим полученное уравнение:

Подставляя координаты точек M1 и M2 в (9) можем убедится, что прямая заданная уравнением (9) проходит через эти точки.

Видео:Видеоурок "Параметрические уравнения прямой"Скачать

Видеоурок "Параметрические уравнения прямой"

Приведение общего уравнения прямой на плоскости к каноническому виду

Нам нужно привести уравнение (1) к каноническому виду. Для этого найдем некоторую точку M0(x0,y0) на этой прямой. Тогда имеем:

Ax0+By0+C=0(10)
A(xx0)+B(yy0)=0(11)

Вторую слагаемую уравнения (11) переместим на право и разделим обе части уравнения на −AB:

Перевод уравнения прямой из общего вида в канонический(12)

Мы получили каноническое уравнение прямой. Вектор q=<−B, A> является направляющим вектором прямой (12).

Обратное преобразование смотрите здесь.

Пример 3. Прямая на плоскости представлена следующим общим уравнением:

Привести данное уравнение прямой к каноническому виду.

Решение: Найдем некоторую точку на прямой (13). Для этого подставим в (13) y=1 и найдем x. Получим x=2. Запишем уравнение прямой пользуясь формулой (11):

Переместим на право вторую слагаемую и разделим обе части уравнения на 2·5:

Перевод уравнения прямой из общего вида в канонический
Перевод уравнения прямой из общего вида в канонический

Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Приведение общего уравнения прямой на плоскости к параметрическому виду

В предыдущем параграфе мы привели общее уравнение прямой (1) к каноническому виду (12). Из канонического уравнения легко получить параметрическое уравнение прямой. для этого левый и правый части уравнения (12) обозначим через параметр t. Тогда получим:

Перевод уравнения прямой из общего вида в канонический

Выразив x и y через параметр t, получим параметрическое уравнение прямой:

Перевод уравнения прямой из общего вида в канонический

Обратное преобразование смотрите здесь.

Пример 4. Прямая на плоскости представлена следующим общим уравнением:

Привести данное уравнение прямой к параметрическому виду.

Решение: Найдем некоторую точку на прямой (13). Для этого подставим в (14) x=3 и найдем y. Получим y=11. Запишем уравнение прямой пользуясь формулой (11):

Переместим на право вторую слагаемую и разделим обе части уравнения на 5·2:

Перевод уравнения прямой из общего вида в канонический

Обозначим обе части уравнения через параметр t:

Перевод уравнения прямой из общего вида в канонический

Выразим x и y через параметр t:

Перевод уравнения прямой из общего вида в канонический

Ответ. Параметрическое уравнение прямой имеет следующий вид:

Видео:Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Каноническое уравнение прямой на плоскости

Каноническим уравнением прямой, проходящей через данную точку Перевод уравнения прямой из общего вида в каноническийи имеющей заданный направляющий вектор Перевод уравнения прямой из общего вида в канонический, называется уравнение вида

Перевод уравнения прямой из общего вида в канонический. (1)

Направляющий вектор — это вектор, параллельный искомой прямой. При этом координаты направляющего вектора связаны отношением Перевод уравнения прямой из общего вида в каноническийс общим уравнением как искомой прямой, так и любой другой прямой, параллельной направляющему вектору.

Перевод уравнения прямой из общего вида в канонический

Элементарными преобразованиями (в основном приведением к общему знаменателю и затем умножением всех членов уравнения на общий знаменатель) каноническое уравнение прямой легко приводится к уравнению прямой в общем виде.

Заметим, что в каноническом уравнении один один из знаменателей (то есть, одна из координат направляющего вектора) Перевод уравнения прямой из общего вида в каноническийили Перевод уравнения прямой из общего вида в каноническийможет оказаться равным нулю (оба числа быть равными нулю не могут, ибо вектор Перевод уравнения прямой из общего вида в каноническийненулевой). Так как всякая пропорция Перевод уравнения прямой из общего вида в каноническийозначает равенство Перевод уравнения прямой из общего вида в канонический, то в данном случае каноническое уравнение прямой запишется в виде

Перевод уравнения прямой из общего вида в канонический. (2)

Пример 1. Составить на плоскости каноническое уравнение прямой, проходящей через точку Перевод уравнения прямой из общего вида в каноническийи имеющей направляющий вектор Перевод уравнения прямой из общего вида в канонический. Затем привести уравнение к общему виду.

Решение. Поскольку одна из координат направляющего вектора равна нулю, то по формуле (2) получаем:

Перевод уравнения прямой из общего вида в канонический.

Приводим уравнение к общему виду:

Перевод уравнения прямой из общего вида в канонический.

Пример 2. Составить на плоскости каноническое уравнение прямой, проходящей через точку Перевод уравнения прямой из общего вида в каноническийи имеющей направляющий вектор Перевод уравнения прямой из общего вида в канонический. Затем привести уравнение к общему виду.

Решение. По формуле (2) получаем каноническое уравнение:

Перевод уравнения прямой из общего вида в канонический.

Приводим уравнение к общему виду:

Перевод уравнения прямой из общего вида в канонический.

Как видим, координаты направляющего вектора связаны с общим уравнением отношением Перевод уравнения прямой из общего вида в канонический. Значит, задача решена корректно.

Пример 3. Составить на плоскости каноническое уравнение прямой, проходящей через точку Перевод уравнения прямой из общего вида в каноническийи параллельной заданной прямой Перевод уравнения прямой из общего вида в канонический. Затем привести уравнение к общему виду.

Решение. Из общего уравнения заданной прямой получаем координаты направляющего вектора:

Перевод уравнения прямой из общего вида в канонический.

Тогда каноническое уравнение искомой прямой запишется в виде:

Перевод уравнения прямой из общего вида в канонический.

Приводим это уравнение к общему виду:

Перевод уравнения прямой из общего вида в канонический

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением Перевод уравнения прямой из общего вида в канонический.

Пример 4. Составить на плоскости каноническое уравнение прямой, проходящей через точку Перевод уравнения прямой из общего вида в каноническийи равноудалённой от точек Перевод уравнения прямой из общего вида в каноническийи Перевод уравнения прямой из общего вида в канонический. Затем привести уравнение к общему виду.

Решение. Искомая прямая равноудалена от точек P и Q, следовательно, параллельна прямой, проходящей через эти точки. Поэтому сначала составим общее уравнение этой прямой, а из него получим координаты направляющего вектора искомой прямой:

Перевод уравнения прямой из общего вида в канонический

Таким образом, направляющий вектор запишется так:

Перевод уравнения прямой из общего вида в канонический.

Каноническое уравнение искомой прямой:

Перевод уравнения прямой из общего вида в канонический.

Приводим это уравнение к общему виду:

Перевод уравнения прямой из общего вида в канонический

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением Перевод уравнения прямой из общего вида в канонический.

Пример 5. Даны вершины треугольника Перевод уравнения прямой из общего вида в канонический, Перевод уравнения прямой из общего вида в каноническийи Перевод уравнения прямой из общего вида в канонический. Составить каноническое уравнение прямой, проходящей через вершину A параллельно стороне BC. Затем привести уравнение к общему виду.

Решение. Cначала составим общее уравнение стороны BC, а из него получим координаты направляющего вектора искомой прямой:

Перевод уравнения прямой из общего вида в канонический

Таким образом, направляющий вектор запишется так:

Перевод уравнения прямой из общего вида в канонический.

Составляем каноническое уравнение искомой прямой:

Перевод уравнения прямой из общего вида в канонический.

Приводим это уравнение к общему виду:

Перевод уравнения прямой из общего вида в канонический

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением Перевод уравнения прямой из общего вида в канонический.

📽️ Видео

53. Приведение общего уравнения кривой к каноническому видуСкачать

53. Приведение общего уравнения кривой к каноническому виду

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"

§23 Приведение матрицы к каноническому видуСкачать

§23 Приведение матрицы к каноническому виду

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Видеоурок "Общее уравнение прямой"Скачать

Видеоурок "Общее уравнение прямой"

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример

Лекция 28. Виды уравнения прямой в пространстве.Скачать

Лекция 28. Виды уравнения прямой в пространстве.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Видеоурок "Приведение к каноническому виду"Скачать

Видеоурок "Приведение к каноническому виду"
Поделиться или сохранить к себе: