О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.
- Как переносить умножение через равно?
- Как переносить знак умножения?
- Как правильно переносить знаки в уравнениях?
- Как переносить умножение в уравнении?
- Зачем умножать обе части уравнения?
- Как переносить множители через знак равно?
- Как правильно переносить с тире?
- Что такое Х в уравнение?
- Какие правила используют при решении уравнений?
- Что значит решить уравнение?
- Как переносить множители в уравнении?
- Когда меняется знак в уравнении?
- 🎥 Видео
Видео:Уравнение. 5 класс.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение сложных уравнений 4-5 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.
Правило переноса слагаемого.
При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения. Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.
Примеры переноса слагаемого:
Сначала переносим 5x из левой части уравнения в правую:
Далее переносим (−6) из правой части в левую:
Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+». При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.
Переносим 1-е слагаемое в правую сторону уравнения. Получаем:
Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 ⋅2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x). Эти 2 слагаемых можно переносить отдельно друг от друга.
Таким же образом преобразовывают неравенства:
Собираем каждое число с одной стороны. Получаем:
2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».
Это правило зачастую используется для решения линейных уравнений. Для решения систем линейных уравнений используются другие методы.
Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать
Как переносить умножение через равно?
Видео:Уравнения. 5 классСкачать
Как переносить знак умножения?
Можно также переносить на знаках действия «+» и «-«, и только в крайнем случае на знаке умножения, при этом вместо знака умножения пишется не точка, а косой крест. При переносе на каком-либо знаке этот знак пишется в конце первой строки и начале второй. Надо помнить, что перенос на знаке деления не делается.
Видео:Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать
Как правильно переносить знаки в уравнениях?
Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств. Примеры переноса слагаемого: 5x+2=7x−6.
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Как переносить умножение в уравнении?
Если речь идёт о решении уравнений, то перенести арифметическое действие через знак равенства невозможно. Можно перенести через знак равенства множители, и с другой стороны они станут делителями. Можно перенести через знак равенства делители, и с другой стороны они станут множителями.
Видео:МАТЕМАТИКА 5 класс: Уравнение | Короткий видеоурокСкачать
Зачем умножать обе части уравнения?
К обеим частям уравнения можно прибавить или из них вычесть по одинаковому числу. Обе части уравнения можно умножить или разделить на одно и то же число, исключая случай, когда это число может оказаться равным нулю.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Как переносить множители через знак равно?
При переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число мы умножаем/делим обе части уравнения на ОДНО и то же число.
Видео:Уравнения со скобками - 5 класс (примеры)Скачать
Как правильно переносить с тире?
§ 123. Нельзя переносить на другую строку пунктуационные знаки, кроме тире, стоящего после точки или после двоеточия перед второй частью прерванной прямой речи. § 124. Нельзя оставлять в конце строки открывающую скобку и открывающие кавычки.
Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать
Что такое Х в уравнение?
В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы «x» [икс] и «y» [игрек]. Корень уравнения — это значение буквы, при котором из уравнения получается верное числовое равенство.
Видео:11. Уравнения (Виленкин, 5 класс)Скачать
Какие правила используют при решении уравнений?
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
Видео:Решение уравненийСкачать
Что значит решить уравнение?
Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. . Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет вовсе (либо нет тех, что удовлетворяют заданным условиям).
Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
Как переносить множители в уравнении?
При переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число мы умножаем/делим обе части уравнения на одно и то же число.
Видео:Почему при переносе слагаемого знак меняется?Скачать
Когда меняется знак в уравнении?
Знак неравенства меняется на противоположный, если обе части разделить на одно и то же отрицательное число: Если a>b и m Как переносить делители?
Слово « делитель » может переноситься одним из следующих способов:
- де-литель
- дели-тель
🎥 Видео
РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Раскрытие скобок. 6 класс.Скачать