Овладение детьми способом решения уравнений в начальной школе создает прочную основу для дальнейшего обучения алгебры, химии, физики и других предметов.
Начиная с 3-го класса, ученикам встречаются сложные уравнения, но справиться с ними очень просто.
Дети уже умеют решать простые уравнения, читай об этом здесь.
А эта статья будет посвящена решению сложных уравнений в 2-3 действия.
Очень часто родители, желая помочь, объясняют так: вот смотри, сейчас вот это число перенести в другую часть от знака равенства, надо поменять знак на противоположный: было умножение, меняем на деление; было сложение меняем на вычитание.
В начальной школе это объяснение не срабатывает, т.к. ребенок не знаком с законами алгебры.
Как сложное уравнение привести к тому, которые мы уже умеем решать, а именно к уравнению в 1 действие?
Рассмотрим уравнение в 2 действия:
х + 56 = 98 — 2 — оно достаточно легкое.
Здесь особого труда не будет в решении, потому что ребенок сразу догадается, что сначала надо 98-2.
х + 56 = 98 — 2
х + 56 = 96 – это простое уравнение. А его решаем очень быстро!
Сейчас мы рассмотрим уравнение:
Такое уравнение можно решить несколькими способами.
- У нас здесь неизвестное число х. Мы не знаем, что спрятано за этим числом.
А когда к х + 5 – это число тоже известно.
Закроем его и пусть это будет другое число, например b .
Мы видим, что у нас получилось самое простое уравнение в 1 действие.
2 • b = 30
А чтобы найти а, нам нужно 30 : на 2.
А b не что иное, как х + 5.
х + 5 = 30 : 2
х + 5 = 15
х = 15 – 5
х = 10
Проверку делаем как обычно: переписываем первое уравнение: 2 • (10 + 5) = 30.
30 – переписываем, а левую часть считаем — будет 30.
30 = 30, значит, уравнение решили правильно.
При решении таких сложных уравнений самое главное – понять, что заменить на другое неизвестное число. Когда в уравнении всего 2 действия – это очень просто.
- Более удобно и понятно, как показывает практика, если использовать решение сложных уравнений на основе зависимости между компонентами действий.
Наше уравнение 2 • (х + 5) = 30 читаем так: число 2 умножить на сумму х и пяти, получится 30. В данном случае – нам неизвестна сумма, чтобы ее найти, надо 30:2.
48 : (16 – а) = 4.
Если опять заменять часть уравнения другим неизвестным числом, можно запутаться. Поэтому легче использовать взаимосвязи компонентов и результата действия: число 48 разделить на разность.
Нам неизвестна разность, поэтому сначала нужно узнать чему она равна. Надо 48 : 4.
16 — а = 48 : 4
16 — а = 12 – это простое уравнение.
а = 16 — 12
а = 4
Проверка: 48 : (16 — 4) = 4
Давайте посмотрим еще одно:
Из 96 надо вычесть разность с и 16. Чтобы найти разность, надо 96-94.
Проверка: 96 — (16 — 14) = 94
А сейчас мы переходим к тем уравнениям, у которых не 2, а 3 действия. Как же нам поступать в этом случае? При решении таких сложных уравнения используем знания порядка выполнения действий в выражениях со скобками и без них.
Рассмотрим уравнение: 36 – (8 • у + 5) = 7
Прежде всего, нужно внимательно оценить левую часть уравнения: ту, которая с неизвестным числом. Вы должны четко себе представить какое вы будете делать действие первым, какое – вторым, какое – третьим: сначала делается умножение, потом сложение и последним – вычитание.
И вот то, которое вы будете делать третьим, с него и начнем, т.е. начинаем упрощать уравнение с последнего действия. Последнее действие – вычитание. С него и начнем: из числа 36 вычесть то, что в скобках и получим 7.
Значит, то что в скобках – вычитаемое, чтобы его найти, надо 36 — 7.
По правилам математики в данной записи скобки – не ставим.
8 • у + 5 = 29 – уравнение сложное. Нужно его упростить. Данное уравнение читаем так: к произведению 8 и у прибавили 5 и получилось 29. Нам неизвестно произведение, чтобы его найти, надо 29-5.
8 • у = 24 – это уравнение простое.
Проверка: 36 — (8 • у + 5) = 7 . Правую часть – 7 — переписываем, а левую считаем.
Итак: 7 = 7. Значит, уравнение решили правильно.
(36 + d) : 4 + 8 = 18. Определяем порядок действий: первое – сложение в скобках, второе – деление, третье сложение вне скобок. Значит, все, что до 8 – это первое слагаемое, чтобы его найти, надо 18 — 8
(36 + d) : 4 = 18 — 8
(36 + d) : 4 = 10 – уравнение сложное, теперь последнее действие — :, значит
36 + d = 40 – уравнение простое и его мы решаем легко!
Для удобства и быстроты решения сложных уравнений можете пользоваться данной памяткой
Дело в том, что при кажущейся сложности, если внимательно изучить все приемы, которые я вам сегодня показала, эти уравнения дети будете щелкать как семечки. Обязательно напишите в комментариях, какой способ вам более удобен.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 58
- Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.
- Памятка для обучающихся 3 класса «Алгоритм решения уравнений»
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 🎬 Видео
Видео:Математика 3 класс (Урок№45 - Уравнения на основе связи между результатами и компонентами "." и ":")Скачать
Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.
Правило переноса слагаемого.
При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения. Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.
Примеры переноса слагаемого:
Сначала переносим 5x из левой части уравнения в правую:
Далее переносим (−6) из правой части в левую:
Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+». При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.
Переносим 1-е слагаемое в правую сторону уравнения. Получаем:
Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 ⋅2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x). Эти 2 слагаемых можно переносить отдельно друг от друга.
Таким же образом преобразовывают неравенства:
Собираем каждое число с одной стороны. Получаем:
2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».
Это правило зачастую используется для решения линейных уравнений. Для решения систем линейных уравнений используются другие методы.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Памятка для обучающихся 3 класса «Алгоритм решения уравнений»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Алгоритм решения уравнений на нахождение уменьшаемого.
1. Запиши уравнение
2. Назови компоненты
уменьшаемое, вычитаемое, разность
3. Назови, что известно
вычитаемое 4, разность 6.
4. Назови, что неизвестно
5. Вспомни правило
чтобы найти неизвестное уменьшаемое надо к разности 6 прибавить вычитаемое 4
в первую запись вместо х запиши полученное число
Сосчитай, чему равна левая часть, посмотри, равна ли она правой части
уравнение решено верно
У вас получилась запись: 4 6
вычитаемое разность
Х – 4 = 6
Х = 6 + 4
10 – 4 = 6 ? (уменьшаемое)
Алгоритм решения уравнений на нахождение вычитаемого.
1. Запиши уравнение
2. Назови компоненты
уменьшаемое, вычитаемое, разность
3. Назови, что известно
уменьшаемое 8, разность 3
4. Назови, что неизвестно
5. Вспомни правило
чтобы найти неизвестное вычитаемое надо из уменьшаемого 8 вычесть разность 3.
в первую запись вместо у запиши полученное число
сосчитай, чему равна левая часть, посмотри, равна ли она правой части
уравнение решено верно
У вас получилась запись: вычитаемое 3
? разность
8 – у = 3
8 – 5 = 3 уменьшаемое
Алгоритм решения уравнений на нахождение слагаемого.
1. Запиши уравнение
2. Назови компоненты
1 слагаемое, 2 слагаемое, сумма
3. Назови, что известно
1 слагаемое – 6, сумма — 9
4. Назови, что неизвестно
5. Вспомни правило
Чтобы найти неизвестное 2 слагаемое надо из суммы 9 вычесть 1 слагаемое 6
в первую запись вместо у запиши полученное число
сосчитай, чему равна левая часть, посмотри, равна ли она правой части
уравнение решено верно
У вас получилась запись:
6 + у = 9 1 слагаемое 2 слагаемое
у = 9 – 6 6 ?
у = 3
9 = 9 9 сумма (целое)
Уравнение — математическое равенство с одной или несколькими неизвестными величинами (числами), верное только для определённых наборов этих величин.
Неизвестные числа обозначаются латинскими буквами Х (икс) и У (игрек)
Х + 5 = 9
левая часть правая часть
Решить уравнение – это значит найти неизвестное число (неизвестную величину). Если подставить его в уравнение вместо буквы, то должно получиться верное равенство.
Алгоритм решения уравнений
2. Посмотри, это уравнение на нахождение
3. Вспомни правило, как найти неизвестное
Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти вычитаемое, надо из уменьшаемого вычесть разность.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Чтобы найти делимое, надо делитель умножить на частное.
Чтобы найти делитель, надо делимое разделить на частное.
4. Запиши решение уравнения
6. Если получилось равенство, значит уравнение решено верно.
7. Если получилось неравенство, проверь вычисления!
Алгоритм решения уравнений
2. Посмотри, это уравнение на нахождение
3. Вспомни правило, как найти неизвестное
Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти вычитаемое, надо из уменьшаемого вычесть разность.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Чтобы найти делимое, надо делитель умножить на частное.
Чтобы найти делитель, надо делимое разделить на частное.
4. Запиши решение уравнения
6. Если получилось равенство, значит уравнение решено верно.
7. Если получилось неравенство, проверь вычисления!
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 945 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 687 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 315 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 590 804 материала в базе
Материал подходит для УМК
«Математика (в 2 частях)», Моро М.И., Бантова М.А., Бельтюкова Г.В. и др.
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 08.10.2021
- 96
- 2
- 07.10.2021
- 51
- 0
- 07.10.2021
- 123
- 0
- 07.10.2021
- 89
- 3
- 07.10.2021
- 53
- 1
- 07.10.2021
- 133
- 0
- 07.10.2021
- 151
- 3
- 07.10.2021
- 82
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 08.10.2021 1731
- DOCX 82 кбайт
- 40 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Трофимова Юлия Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 4 месяца
- Подписчики: 0
- Всего просмотров: 39637
- Всего материалов: 14
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Решение уравнений на умножение и деление.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Школьник из Сочи выиграл международный турнир по шахматам в Сербии
Время чтения: 1 минута
Каждый второй ребенок в школе подвергался психической агрессии
Время чтения: 3 минуты
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
Минобрнауки создаст для вузов рекомендации по поддержке молодых семей
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
🎬 Видео
Решение уравнений | Математика 3 класс #4 | ИнфоурокСкачать
Математика 3 класс (Урок№3 - Решение уравнений с неизвестным уменьшаемым, с неизвестным вычитаемым.)Скачать
Простые уравнения. Как решать простые уравнения?Скачать
3 класс. Математика. УравнениеСкачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Математика. 3 класс. Уравнения сложной структуры /21.01.2021/Скачать
РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать
Как решать уравнения с дробью? #shortsСкачать
Решение простых уравнений. Компоненты математических действий.Скачать
Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать
Решение уравнений, 6 классСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать