В общем виде дифференциальное уравнение звена САУ имеет вид:
(6)
где y – выходная величина (в отклонениях от состояния равновесия); x – выходная величина звена (в отклонениях от состояния равновесия); an, an—1,…, a1, a0, bm,bm—1,…, b1, b0 – постоянные коэффициенты, определяемые конструктивными особенностями и параметрами звена.
Так как аналитическое решение дифференциального уравнения в общем случае является трудоемкой задачей, то в современной теории управления широко используют средства описания динамических свойств системы че-рез преобразование Лапласа, что удобнее для практического применения.
Основанием для преобразования служит то обстоятельство, что оно су-щественно облегчает исследование сложных систем, при замене диффе-ренциальных уравнений алгебраическими. В частности, при решении диф-ференциальных уравнений систем преобразование Лапласа позволяет лег-ко учитывать начальные условия и избежать сложных выкладок, связан-ных с вычислением постоянных интегрирования.
Если в уравнение (6), содержащие функции времени y(t) и x(t), ввести функции y(p) и x(p) комплексного переменного p, поставив условие, что эти функции связаны зависимостями
, , (7)
то оказывается, что дифференциальное уравнение, содержащее функции y(t)и x(t), равносильно линейному алгебраическому уравнению, содержа-щему функции y(p) иx(p) :
(8)
Такой переход от дифференциального уравнения к однозначно соответ-ствующему ему алгебраическому уравнению называют преобразованием Лапласа, интеграл (7) – интегралом Лапласа, комплексное переменное p – оператором. Сообразно с этим алгебраическое уравнение (8) является за-писью исходного дифференциального уравнения (6) в операторной форме.
Функцию y(p)называют изображением функции y(t), а функцию y(t) –оригиналом функции y(p). Операция перехода от исходной функции y(t) к ее изображению y(p) (нахождение изображения по оригиналу) называют прямым преобразованием Лапласа. Математически прямое преобразование Лапласа записывают условно с помощью символа L[y(t)] = y(p). Операцию перехода от изображения y(p) к искомой функции y(t) (нахождение ориги-нала по изображению) называют обратным преобразованием Лапласа. Ма-тематически обратное преобразование Лапласа записывается с помощью символа L — 1 [y(p)] = y(t). Практически переход от дифференциального урав-нения к алгебраическому происходит без каких-либо вычислений.
Если сравнить уравнения (1) и (3), то нетрудно заметить, что формально переход дифференциального уравнения к алгебраическому операторному уравнению при нулевых начальных условиях получают путем замены сим-
волов дифференцирования оригиналов функций ,…, соответственно символами p n , p n — 1 ,…, p и функций y(t)– их изображе-ниями y(p).С оператором p можно, как и с другими членами алгебраичес-кого уравнения, производить различные действия (умножение, деление, вынесение за скобки и т.д.). Возможность записи дифференциального уравнения в операторной алгебраической форме значительно упрощает все расчеты.
Каждое звено САУ в общем случае описывают дифференциальным уравнением вида (6). Следовательно, при вводе дифференциального урав-нения системы в целом необходимо совместно решить несколько диффе-ренциальных уравнений высших порядков. Запись дифференциального уравнения в операторной форме позволяет свести задачу к решению сис-темы алгебраических уравнений. Определив из алгебраических уравнений изображение y(p)искомой функции y(t), определяющей переходный про-цесс в системе, находим эту функцию, пользуясь таблицами формул изоб-ражений функций, или графическим путем. Кроме того, запись дифферен-циальных уравнений звеньев системы в операторной форме дает возмож-ность ввести удобное понятие передаточной функции, характеризующей звено системы. С помощью передаточных функций расчет САУ еще более упрощается и становится доступным широкому кругу инженеров, без не-обходимости применения сложного математического аппарата.
Вынесем в уравнении (8) y(p) и x(p) за скобки и получим
Определим из уравнения (4) отношение изображения выходной вели-чины к изображению входной
Отношение W(p)изображения выходной величины системы к изобра-жению его входной величины называют передаточной функцией системы. Соответственно отношение изображения выходной величины звена к изоб-ражению его входной величины называют передаточной функцией звена. Передаточная функция W(p) является дробно-рациональной функцией опе-ратора p:
где P(p) = a n p n + a n — 1 p n — 1 +…+ a1p + a0 – оператор левой части дифференци-ального уравнения; Q(p) =bmp m + bm—1p m — 1 +…+ b1p + b0 – оператор правой части уравнения.
Из уравнения (2) следует, что передаточная функция звена системы W(p) и изображение его выходной величины определяют изображение вы-ходной величины y(p)=W(p)x(p).
При рассмотрении типовых динамических звеньев часто встречаются функциональные зависимости, приведенные на рис. 22.
Рис. 22. Типовые функциональные зависимости:
а – единичная функция; б – экспонента вида ;
в – экспонента вида (1– ); г – непрерывно
Определим лапласово изображение единой функции x(t) = 1:
.
Изображение экспоненты вида x(t) = e — t / T :
.
Изображение экспоненты вида x(t)=1-e — t / T :
.
Изображение непрерывно возрастающей функции x(t)=Kt:
.
Дата добавления: 2019-04-03 ; просмотров: 516 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
- Основные законы и формулы операторного метода, расчет переходных процессов.
- Преобразование Лапласа с примерами решения и образцами выполнения
- Свойства преобразования Лапласа
- Свертка функций. Теорема умножения
- Отыскание оригинала по изображению
- Отыскание оригинала с помощью таблиц изображений
- Использование теоремы обращения и следствий из нее
- Приложения преобразования Лапласа (операционного исчисления)
- Решение линейных дифференциальных уравнений с постоянными коэффициентами
- Формула Дюамеля
- Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами
- Решение интегральных уравнений
- Таблица преобразования Лапласа
- Дополнение к преобразованию Лапласа
- 📺 Видео
Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Основные законы и формулы операторного метода, расчет переходных процессов.
Характер свободной составляющей в цепи 2-го порядка.
Характер свободной составляющей в цепи второго порядка.
1) ; — функция имеет апериодический характер.
2) ;
,
где — корни комплексно сопряженные.
Свободная составляющая будет носить колебательный характер.
3) Дискриминант равен нулю и корни будут действительные равные (предельный случай апериодического режима).
47. Последовательность расчета переходных процессов классическим методом. 1) Записываем искомое решение в виде установившейся и свободной составляющей. Для цепи первого порядка решение имеет вид:
2) Находим (установившуюся составляющую) для послекоммутационной схемы.
3) Найдем корень характеристического уравнения. Составляем характеристическое уравнение для послекоммутационной схемы, и, решая его, находим корни характеристического уравнения. Характеристическое уравнение может быть получено двумя способами:
а) Из комплексного входного сопротивления, записанного для послекоммутационной схемы, где “ ”заменяется на “ ”, причем входное сопротивление приравнивается к нулю
б) Из дифференциального уравнения, составленного по законам Кирхгофа для послекоммутационной схемы.
Поскольку входное сопротивление записывается для свободной составляющей, то можно считать, что источник находится в ветви с любым реактивным элементом и удобнее записывать комплексные входные сопротивления для этого случая. 4) Определяем i в момент времени t=0 (зависимые и независимые начальные условия, и, если необходимо, их производные).
5) Определяем постоянные интегрирования:
6) Подставляем все величины, найденные в пп. 2 – 6 в исходное уравнение.
Основные понятия операторного метода расчета переходных процессов..
Функция называется оригиналом.
Функция называется изображением. Метод расчета, основанный на замене оригиналов их изображениями, называется операторным. Это позволяет перейти от дифференциальных уравнений к алгебраическим. Переход от оригиналов к изображениям осуществляется с помощью прямого преобразования Лапласа:
, где — комплексный оператор.
Переход от изображений к оригиналам осуществляется с помощью обратного преобразования Лапласа:
Найдем изображения некоторых простейших функций
1) , тогда:
2) , тогда:
3) тогда:
4) Пусть . Тогда:
Основные законы и формулы операторного метода, расчет переходных процессов.
1) Сумме оригиналов соответствует сумма изображений.
2) Умножению оригинала на постоянное число соответствует умножение изображения на то же число:
3) Дифференцированию оригинала соответствует умножение изображения на “p” – значение функции в момент времени “t=0”.
4) Интегрированию оригинала соответствует деление изображения на оператор “p”:
Найдем напряжение на индуктивности:
Найдем ток и напряжение в емкости:
Напряжение на емкости:
— напряжение на емкости при нулевых начальных условиях.
При ненулевых начальных условиях:
50 Основные законы электрических цепей в операторной форме записи.
Перейдем от оригиналов к изображениям:
Изображение тока равно:
(1)
Здесь — операторное сопротивление цепи. Оно может быть получено из комплексного сопротивления путем замены “jω” на “p”. Это соответствует переходу от преобразования Фурье к преобразованию Лапласа:
— закон Ома при нулевых начальных условиях. Уравнению (1) соответствует следующая схема замещения:
В этой операторной схеме замещения ненулевые начальные условия учитываются введением дополнительных внутренних источников ЭДС, причем источник направлен по направлению протекающего тока, а источник , учитывающий напряжение на емкости, направляется навстречу протекающему току. Первый закон Кирхгофа в операторной форме выглядит следующим образом:
Второй закон Кирхгофа в операторной форме:
Для расчета операторных схем замещения применяются все известные методы, основанные на законах Кирхгофа.
51. Переход от изображений к оригиналам. Формула разложения. Переход от изображений к оригиналам осуществляется двумя способами:
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Преобразование Лапласа с примерами решения и образцами выполнения
Ранее мы рассмотрели интегральное преобразование Фурье
с ядром K(t, ξ) = .
Преобразование Фурье неудобно тем, что должно быть выполнено условие абсолютной интегрируемости функции f(t) на всей оси t,
Преобразование Лапласа позволяет освободиться от этого ограничения.
Определение:
Функцией-оригиналом будем называть всякую комплекснозначную функцию f(t) действительного аргумента t, удовлетворяющую следующим условиям:
- f(t) непрерывна на всей оси t, кроме отдельных точек, в которых f(t) имеет разрыв 1-го рода, причем на каждом конечном интервале оси t таких точек может быть лишь конечное число;
- функция f(t) равна нулю при отрицательных значениях t, f(t) = 0 при t 0 и з такие, что для всех t
Ясно, что если неравенство (1) выполняется при некотором s = s1, то оно будет выполнятся при всяком s2 > s1.
Точная нижняя грань sо всех чисел s, so = infs, для которых выполняется неравенство (1), называется показателем роста функции f(t).
Замечание:
В общем случае неравенство
не имеет места, но справедлива оценка
где ε > 0 — любое. Так, функция f(t) = t, t ≥ 0, имеет показатель роста so =0. Для нее неравенство |t| ≤ М ∀t ≥ 0 не выполняется, но ∀ε > О, ∀t > 0 верно неравенство
Условие (1) гораздо менее ограничительное, чем условие (*).
Пример:
не удовлетворяет условию (*), но условие (1) выполнено при любом s ≥ 1 и М ≥ 1; показатель роста so = 1. Так что f(t) является функцией-оригиналом. С другой стороны, функция
не является функцией-оригиналом: она имеет бесконечный порядок роста, sо = +∞. Простейшей функцией-оригиналом является
так называемая единичная функция
Если некоторая функция φ(t) удовлетворяет условиям 1 и 3 определения 1, но не удовлетворяет условию 2, то произведение f(t) = φ(t) η(t) уже является функцией-оригиналом.
Для простоты записи мы будем, как правило, множитель η(t) опускать, условившись, что все функции, которые мы будем рассматривать, равны нулю для отрицательных t, так что если речь идет о какой-то функции f(t) например, о sin t, cos t, e t и т. д., то всегда подразумеваются следующие функции (рис. 2):
Определение:
Пусть f(t) есть функция-оригинал. Изображением функции f(t) по Лапласу называется функция F(p) комплексного переменного р = s + iσ, определяемая формулой
где интеграл берется по положительной полуоси t. Функцию F(p) называют также преобразованием Лапласа функции f(t); ядро преобразования K(t, р) = e -pt .
Тот факт, что функция f(x) имеет своим изображением F(p), будем записывать так:
Пример:
Найти изображение единичной функции η(t).
Функция является функцией-оригиналом с показателем роста s0 = 0. В силу формулы (2) изображением функции η(t) будет функция
Если р = s + iσ, то при s > 0 интеграл в правой части последнего равенства будет сходящимся, и мы получим
так что изображением функции η(t) будет функция 1/p. Как мы условились, будем писать, что η(t) = 1, и тогда полученный результат запишется так:
Теорема:
Для всякой функции-оригинала f(t) с показателем роста sо изображение F(p) определено в полуплоскости Re p = s > So и является в этой полуплоскости аналитической функцией (рис. 3).
Для доказательства существования изображения F(p) в указанной полуплоскости достаточно установить, что несобственный интеграл (2) абсолютно сходится при s > so. Используя (3), получаем
что и доказывает абсолютную сходимость интеграла (2). Одновременно мы получили оценку преобразования Лапласа F(p) в полуплоскости сходимости Re р = s > so
Дифференцируя выражение (2) формально под знаком интеграла по р, находим
Существование интеграла (5) устанавливается так же, как было установлено существование интеграла (2).
Применяя для F'(p) интегрирование по частям, получаем оценку
откуда следует абсолютная сходимость интеграла (5). (Внеинтегральное слагаемое — при t → + ∞ имеет предел, равный нулю). В любой полуплоскости Re р ≥ S1 > So интеграл (5) сходится равномерно относительно р, поскольку он мажорируется сходящимся интегралом
не зависящим от р. Следовательно, дифференцированиепо р законно и равенство (5) справедливо.
Поскольку производная F'(p) существует, преобразование Лапласа F(p) всюду в полуплоскости Re p = s > sо является аналитической функцией.
Из неравенства (4) вытекает
Следствие:
Если точка р стремится к бесконечности так, что Re р = s неограниченно возрастает, то
Пример:
Найдем еще изображение функции f(t) =, где а = а + iβ — любое комплексное число.
Показатель роста sо функции f(t) равен а.
Считая Rep = s> а, получим
При а = 0 вновь получаем формулу
Обратим внимание на то, что изображение функции является аналитической функцией аргумента р не только в полуплоскости Re p > а, но и во всех точках р, кроме точки р = а, где это изображение имеет простой полюс. В дальнейшем мы не раз встретимся с подобной ситуацией, когда изображение F(p) будет аналитической функцией во всей плоскости комплексного переменного р, за исключением изолированных особых точек. Противоречия с теоремой 1 нет. Последняя утверждает лишь, что в полуплоскости Re p > So функция F(p) не имеет особых точек: все они оказываются лежащими или левее прямой Re p = So, или на самой этой прямой.
Замечание:
В операционном исчислении иногда пользуются изображением функции f(t) по Хевисайду, определяемым равенством
и отличаюикмся от шоСражения по Лапласу множителем р.
Видео:Однородное дифференциальное уравнениеСкачать
Свойства преобразования Лапласа
В дальнейшем через f(t), φ(t), … будем обозначать функции-оригиналы, а через F(p), Ф(р), … — их изображения по Лапласу,
Из определения изображения следует, что если f(t) = 9 ∀t, то F(p) = 0.
Теорема единственности:
Теорема:
Справедливость утверждения вытекает из свойства линейности интеграла, определяющего изображение:
— показатели роста функций f(t) и φ(t) соответственно).
На основании этого свойства получаем
Аналогично находим, что
(4)
Теорема подобия:
Если f(t) — функция-оригинал и F(p) — ее изображение по Лапласу, то для любого постоянного а > 0
Полагая at = т, имеем
Пользуясь этой теоремой, из формул (5) и (6) получаем
Теорема:
О дифференцировании оригинала. Пусть f(t) является функцией-оригиналом с изображением F(p) и пусть — также функции-оригиналы, — показатель роста функции (k = 0, 1,…, п). Тогда
Здесь под fk(0) (k = 0,1,… , п — 1) понимается правое предельное значение .
Пусть f(t) = F(p). Найдем изображение f'(t). Имеем
Интегрируя по частям, получаем
Внеинтегральное слагаемое в правой части (10) обращается в нуль при t → + ∞, т. к. при Re р = s > имеем
подстановка t = 0 дает -f(0).
Второе слагаемое справа в (10) равно pF(p). Таким образом, соотношение (10) принимаетвид
и формула (8) доказана. В частности, если f(0) = 0, то f'(t) = pF(p). Для отыскания изображения запишем
откуда, интегрируя п раз по частям, получим
Пример:
Пользуясь теоремой о дифференцировании оригинала, найти изображение функции f(t) = sin 2 t.
Пусть f(t) = F(p). Тогда
Но f(0) = О, а f'(0) = 2 sin t cos t = sin 2t = . Следовательно, = pF(p), откуда F(p) =
Теорема 5 устанавливает замечательное свойство интегрального преобразования Лапласа: оно (как и преобразование Фурье) переводит операцию дифференцирования в алгебраическую операцию умножения на р.
Формула включения. Если f(t) и f'(t) являются функциями-оригиналами, то (11)
В самом деле, f'(
Так как функция F(p) в полуплоскости Rep = s > so является аналитической, то ее можно дифференцировать по р. Имеем
Последнее как раз и означает, что
Пример:
Пользуясь теоремой 6, найти изображение функции .
Как известно, 1 = 1/p. Здесь f(t) = 1, F(p) = 1/p. Отсюда (1/p)’= (-t) • 1, или = t. Вновь применяя теорему 6, найдем
Теорема:
Интегрирование оригинала. Интегрирование оригинала сводится к делению изображения на р: если f(t) = F(p), то
Нетрудно проверить, что если f(t) есть функция-оригинал, то и φ(t) будет функцией-оригиналом, причем φ(0) = 0. Пусть φ(t) = Ф(р). В силу (14)
С другой стороны, f(t) =’ F(p), откуда F(p) = рФ(р), т.е. Ф(р) =.
Последнее равносильно доказываемому соотношению (13).
Пример:
Найти изображение функции
В данном случае f(t) = cos t, так что F(p) = . Поэтому
Теорема:
Интегрирование изображения. Если f(t) = F(p) и интеграл сходится, то он служит изображением функции
Предполагая, что путь интегрирования (р, ∞) лежит в полуплоскости Re p ≥ а> so, мы можем изменить порядок интегрирования (t > 0):
Последнее равенство означает, что является изображением функции .
Пример:
Найти изображение функции .
Как известно, sin t = .
Теорема запаздывания:
Положим ξ = t- τ. Тогда dt = d ξ. При t = τ получаем ξ = 0, при t = + ∞ имеем ξ = + ∞.
Поэтому соотношение (16) принимает вид
Пример:
Найти изображение функции f(t), заданной графически (рис. 5).
Запишем выражение для функции f(t) в следующем виде:
Это выражение можно получить так. Рассмотрим функцию f1(t) = η(t) для t ≥ 0 (рис. 6 а) и вычтем из нее функцию
Разность f(t) — h(t) будет равна единице для t ∈ [0,1) и -1 для t ≥ 1 (рис. 6 b). К полученной разности прибавим функцию
В результате получим функцию f(t) (рис. 6 в), так что
Отсюда, пользуясь теоремой запаздывания, найдем
Теорема смещения:
Теорема позволяет по известным изображениям функций находить изображения тех же функций, умноженных на показательную функцию , например,
Свертка функций. Теорема умножения
Пусть функции f(t) и φ(t) определены и непрерывны для всех t. Сверткой (f *φ)(t) этих функций называется новая функция от t, определяемая равенством
(если этот интеграл существует).
Для функций-оригиналов f(t) и φ(t) операция свертки всегда выполнима, причем
(17)
В самом деле, произведение функций-оригиналов f( τ ) φ(t — τ), как функция от τ, является финитной функцией, т.е. обращается в нуль вне некоторого конечного промежутка (в данном случае вне отрезка 0 ≤ τ ≤ t). Для финитных непрерывных функций операция свертки выполнима, и мы получаем формулу (17).
Нетрудно проверить, что операциясвертки коммутативна,
Теорема умножения:
Нетрудно проверить, что свертка (f * φ)(t) функций-оригиналов есть функция-оригинал с показателем роста s* = mах, где s1, s2
показатели роста функций f(t) и φ(t) соответственно. Найдем изображение свертки,
Воспользовавшись тем, что
Меняя порядок интегрирования в интеграле справа (при Re р = s > s* такая операция законна) и применяя теорему запаздывания, получим
Таким образом, из (18) и (19) находим
— умножению изображений отвечает свертывание оригиналов,
Пример:
Найти изображение функции
Функция ψ(t) есть свертка функций f(y) = t и φ(t) = sin t. В силу теоремы умножения
Задача:
Пусть функция f(t), периодическая с периодом Т, есть функция-оригинал. Показать, что ее изображение по Лапласу F[p) дается формулой
Видео:Дифференциальные уравнения. 11 класс.Скачать
Отыскание оригинала по изображению
Задача ставится так: дана функция F(p), надо найти функцию f(t). изображением которой является F(p).
Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением.
Теорема:
Если аналитическая в полуплоскости Rep = s > so функция F(p)
1) стремится к нулю при |р| —» + ∞ в любой полуплоскости Re р = а > So равномерно относительно arg р;
сходится абсолютно, то F(p) является изображением некоторой функции-оригинала f<t).
Задача:
Может ли функция F(p) = служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению.
Отыскание оригинала с помощью таблиц изображений
Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду. Например, в случае, когда F(p) — дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа.
Пример:
Найти оригинал для
Запишем функцию F(p) в виде:
Пользуясь теоремой смещения и свойством линейности преобразования Лапласа, получаем
Пример:
Найти оригинал для функции
Запишем F(p) в виде
Отсюда f(t) = t — sin t.
Использование теоремы обращения и следствий из нее
Теорема обращения:
где интеграл берется вдоль любой прямой Re p = s > So и понимается в смысле главного значения, т. е. как
Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина. В самом деле, пусть, например, f(t) — кусочно-гладкая на каждом конечном отрезке [0, а] функция-оригинал-с показателем роста so. Рассмотрим функцию φ(t) = , где s>so — любое.
Функция φ(t) удовлетворяет условиям применимости интегральной формулы Фурье, и, следовательно, справедлива формула обращения преобразования Фурье,
(φ(t) ≡ 0 при t
откуда получаем формулу обращения преобразования Лапласа
Как следствие из теоремы обращения получаем теорему единственности.
Теорема:
Две непрерывные функции f(t) и φ(t), имеющие одно и то же изображение F(p), тождественны.
Непосредственное вычисление интеграла обращения (1) обычно затруднительно. Отыскание оригинала по изображению упрощается при некоторых дополнительных ограничениях на F(p).
Теорема:
Пусть изображение F(p) — дробно-рациональная функция с полюсами р1, p2….pп. Тогда оригиналом для F(p) будет функция f(t) η(t), где
Пусть изображение F(p) — дробно-рациональная функция, F(p) = , где А(р), В(р) — многочлены относительно р (взаимно простые), причем степень числителя А(р) меньше степени знаменателя В(р), т. к. для всякого изображения должно выполняться предельное соотношение
Пусть корни знаменателя В(р), являющиеся полюсами изображения F(p), суть р1, р2, …, рп, а их кратности равны r1, r2, …, rп соответственно.
Если число s, фигурирующее в формуле (1), взять большим всех Re pk (k = 1,2,…, п), то по формуле обращения, которая в этих условиях применима, получим
Рассмотрим замкнутый контур ГR (рис.7), состоящий из дуги CR окружности радиуса R с центром в начале координат и стягивающей ее хорды АВ (отрезка прямой Re р = s), и проходимый в положительном направлении, причем радиус R настолько велик, что все полюсы F(p) лежат внутри ГR.
По теореме Коши о вычетах при любом R, удовлетворяющем указанному условию, будем иметь
Второе слагаемое слева в равенстве (5) стремится к нулю при R → ∞. Это следует из леммы Жордана, если в ней заменить р на iz и учесть, что F(p) → 0 при Re p → + ∞. Переходя в равенстве (5) к пределу при R → ∞, мы получим слева
а справа — сумму вычетов по всем полюсам функции F(p)
Замечание:
Воспользовавшись формулой для вычисления вычетов, найдем, что
Если все полюсы p1, р2,…, рn — простые, то
и формула (6) принимает вид
Пример:
Найти оригинал для функции
Функция F(p) имеет простые полюсы р1 = i. p2 = -i. Пользуясь формулой (7), находим
Теорема:
Пусть изображение F(p) является аналитической функцией в бесконечно удаленной точке р = ∞, причем ее разложение в окрестности |р| > R бесконечно удаленной точки имеет вид
Тогда оригиналом для F(p) будет функция f(t) η<t), где
Пример:
Видео:Операционное исчисление. Решить неоднородное дифференциальное уравнение 2 порядкаСкачать
Приложения преобразования Лапласа (операционного исчисления)
Решение линейных дифференциальных уравнений с постоянными коэффициентами
Дано линейное дифференциальное уравнение второго порядка с постоянными коэффициентами
(1)
(ао, а1, а2 — действительные числа) и требуется найти решение уравнения (1) для t > 0, удовлетворяющее начальным условиям
Будем считать, что f(t) есть функция-оригинал. Тогда x(t) — также функция-оригинал. Пусть
f(t) = F(p), x(t) = X(p).
По теореме о дифференцировании оригинала имеем
Перейдем в уравнении (1) от оригиналов к изображениям. Имеем
Это уже не дифференциальное, а алгебраическое уравнение относительно изображения Х(р) искомой функции. Его называют операторным уравнением. Решая его, найдем операторное решение задачи (1)-(2) —
Оригинал для Х(р) будет искомым решением х(t) задачи (1)-(2).
Общий случай линейного дифференциального уравнения n-го порядка (n ≥ 1) с постоянными коэффициентами от случая п = 2 принципиально ничем не отличается.
Приведем общую схему решения задачи Коши
Здесь означает применение к 1 преобразование Лапласа, — применение к III обратного преобразования Лапласа.
Пример:
Решить задачу Коши
По теореме о дифференцировании изображения
Формула Дюамеля
В приложениях операционного исчисления к решению дифференциальных уравнений часто пользуются следствием из теоремы умножения, известным под названием формулы Дюамеля.
Пусть f(t) и φt) — функции-оригиналы, причем функция f(t) непрерывна на [0, + ∞), a φ(t) — непрерывно дифференцируема на [0,+ ∞). Тогда если f(t) = F(p), φ<t) = Ф(р),то по теореме умножения получаем, что
Нетрудно проверить, что функция ψ(t) непрерывно дифференцируема на [0, + ∞), причем
Отсюда, в силу правила дифференцирования оригиналов, учитывая, что ψ(0) = 0, получаем формулу Дюамеля
(4)
Покажем применение этой формулы.
Пусть требуется решить линейное дифференциальное уравнение n-го порядка (n ≥ 1) с постоянными коэффициентами
при нулевых начальных условиях
(последнее ограничение несущественно: задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями заменой искомой функции).
Если известно решение x(t) дифференциального уравнения с той же левой частью и правой частью, равной единице,
L[x(t)] = l (7)
при нулевых начальных условиях
то формула Дюамеля (4) позволяет сразу получить решение исходной задачи (5)-(6).
В самом деле, операторные уравнения, отвечающие задачам (5)-(6) и (7)-(8), имеют соответственно вид
где F(p) — изображение функции f(t). Из (9) и (10) легко находи
Отсюда по формуле Дюамеля
или, поскольку x1(0) = 0, (11)
Пример:
Решить задачу Коши
Рассмотрим вспомогательную задачу
Применяя операционный метод, находим
По формуле (11) получаем решение x(t) исходной задачи:
Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами
Интегрирование систем осуществляется так же, как и решение одного линейного дифференциального уравнения — путем перехода от системы дифференциальных уравнений к системе операторных уравнений. Решая последнюю как систему линейных алгебраических уравнений относительно изображений искомых функций, получаем операторное решение системы. Оригинал для негобудетрешением исходной системы дифференциальных уравнений.
Пример:
Найти решение линейной системы
удовлетворяющее начальным условиям х(0) = у(0) = I.
Пусть х(
Решая последнюю относительно Х(р) и У(р), получаем
Решение исходной задачи Коши
Решение интегральных уравнений
Напомним, что интегральным уравнением называют уравнение, в котором неизвестная функция входит под знак интеграла. Мы рассмотрим лишь уравнение вида (12)
называемое линейным интегральным уравнением Вольтерра второго рода с ядром K(t — т), зависящим от разности аргументов (уравнение типа свертки). Здесь φ(t) — искомая функция, f(t) и K(t) — заданные функции.
Пусть f(t) и K(t) есть функции-оригиналы, f(t) =’ F(p), K(t) =’ K(p).
Применяя к обеим частям (12) преобразование Лапласа и, пользуясь теоремой умножения, получим
(13)
где Ф(р) = φ(t). Из (13)
Оригинал для Ф(р) будет решением интегрального уравнения (12).
Пример:
Решить интегральное уравнение
Применяя преобразование Лапласа к обеим частям (14), получим
Функция является решением уравнения (14) (подстановка в уравнение (14) обращает последнее в тождество по t).
Замечание:
Преобразование Лапласа может быть использовано также при решении некоторых задач для уравнений математической физики.
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Таблица преобразования Лапласа
Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать
Дополнение к преобразованию Лапласа
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
📺 Видео
Решение физических задач с помощью дифференциальных уравненийСкачать
Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
13. Операционное исчисление. Решить неоднородное ДУ 2 порядкаСкачать
14. Операционное исчисление. Система ДУСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
5. Однородные дифференциальные уравнения. Часть 2.Скачать
Однородные дифференциальные уравнения: метод замены 1Скачать
Решение однородного дифференциального уравнения. Практическая часть. 11 класс.Скачать
Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать
6. Дифференциальные уравнения, приводящиеся к однороднымСкачать